期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断 被引量:3
1
作者 吐松·卡日 +2 位作者 范想 高文胜 朱炜 《电力系统保护与控制》 EI CSCD 北大核心 2024年第3期152-160,共9页
针对在小样本和复杂工况下高压断路器故障诊断识别精度不高的问题,提出一种基于振动信号处理和Ada Boost集成学习的高压断路器故障诊断方法。首先,搭建高压断路器实验平台并采集8种工况下的分闸振动信号。其次,对振动信号进行绝对值处理... 针对在小样本和复杂工况下高压断路器故障诊断识别精度不高的问题,提出一种基于振动信号处理和Ada Boost集成学习的高压断路器故障诊断方法。首先,搭建高压断路器实验平台并采集8种工况下的分闸振动信号。其次,对振动信号进行绝对值处理后,使用分段聚合近似(piecewise aggregate approximation,PAA)进行分段平均,将输出的新序列采用格拉姆角场(Gramian angular field,GAF)转换成图片,并使用Relief F方法对提取的高维图片特征进行重要度排序。最后,将保留的重要特征输入到Ada Boost集成学习模型进行故障诊断,并用蛇优化算法确定最优PAA分段步长和输入分类器特征数量,以进一步提高故障诊断精度。通过分析多种信号处理方式及分类模型可知,图片信号和Ada Boost集成学习模型能够有效处理振动信号并准确判断故障类型,为准确、可靠地诊断高压断路器故障提供了新途径。 展开更多
关键词 高压断路器 振动信号处理 分段聚合近似 格拉姆角场 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部