期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
YOLOv4口罩检测算法的轻量化改进 被引量:27
1
作者 叶子 张红英 《计算机工程与应用》 CSCD 北大核心 2021年第17期157-168,共12页
针对当前YOLOv4目标检测算法网络模型庞大、特征提取不充分且易受光线环境影响的缺点,提出了一种优化了特征提取网络和一般卷积块的轻量化YOLOv4-Lite网络模型。使用改进的MobileNetv3替换原有的主干特征提取网络,减小了网络模型的参数... 针对当前YOLOv4目标检测算法网络模型庞大、特征提取不充分且易受光线环境影响的缺点,提出了一种优化了特征提取网络和一般卷积块的轻量化YOLOv4-Lite网络模型。使用改进的MobileNetv3替换原有的主干特征提取网络,减小了网络模型的参数量,提高了检测精度。提出了使用深度可分离卷积块代替原网络中的普通卷积块,使得模型的参数量进一步降低。结合了标签平滑、学习率余弦退火衰减算法,新增了SiLU激活函数代替Mobile-Netv3浅层网络的ReLU激活函数,优化了模型的收敛效果。优化了Mosaic数据增强方法,提升了模型的鲁棒性。在人脸口罩佩戴任务中与原算法相比,牺牲了1.68%的mAP,但在检测效率(FPS)上提升约180%。 展开更多
关键词 口罩检测 深度学习 YOLOv4 MobileNetv3 深度可分离卷积
下载PDF
融合注意力机制的轻量级戴口罩人脸识别算法 被引量:2
2
作者 叶子 张红英 何昱均 《计算机工程与应用》 CSCD 北大核心 2023年第3期166-174,共9页
COVID-19的全球化大流行使得佩戴口罩出行成为人们生活中的常态,这种防疫措施给人脸识别算法带来了新的挑战。针对这一问题,提出了一种口罩遮挡下的轻量级人脸识别算法,该算法改进GhostNet为主干特征提取网络;提出了融合空间注意力机制... COVID-19的全球化大流行使得佩戴口罩出行成为人们生活中的常态,这种防疫措施给人脸识别算法带来了新的挑战。针对这一问题,提出了一种口罩遮挡下的轻量级人脸识别算法,该算法改进GhostNet为主干特征提取网络;提出了融合空间注意力机制的FocusNet特征加强提取网络,使模型聚焦于未被口罩遮挡的上半脸区域;针对当前口罩遮挡人脸数据集不充分的问题,提出了一种采用三维人脸网络生成添加口罩遮挡的数据增强方法。实验表明,所提出的改进模型与基准模型相比,模型参数量降低84%的同时,戴口罩人脸的识别率提升4.29个百分点,较好地平衡了速度与精度。 展开更多
关键词 戴口罩人脸识别 注意力机制 三维人脸网格生成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部