采用常规的固相反应法结合机械球磨制备了含碳质量分数23.7%的Li_(2)Ni_(2)(MoO_(4))3@C复合材料,并应用于锂离子电池负极。与纯Li_(2)Ni_(2)(MoO_(4))3相比,Li_(2)Ni_(2)(MoO_(4))3@C具有优异的电化学性能,在电流密度为200 mA ·g^...采用常规的固相反应法结合机械球磨制备了含碳质量分数23.7%的Li_(2)Ni_(2)(MoO_(4))3@C复合材料,并应用于锂离子电池负极。与纯Li_(2)Ni_(2)(MoO_(4))3相比,Li_(2)Ni_(2)(MoO_(4))3@C具有优异的电化学性能,在电流密度为200 mA ·g^(-1)时,50周循环后,可逆容量高达845 mAh·g^(-1)。值得注意的是,Li_(2)Ni_(2)(MoO_(4))3@C的首周库仑效率高达85%。此外,运用循环伏安法对Li_(2)Ni_(2)(MoO_(4))3@C复合物存储锂行为进行了初步探索。展开更多
文摘采用常规的固相反应法结合机械球磨制备了含碳质量分数23.7%的Li_(2)Ni_(2)(MoO_(4))3@C复合材料,并应用于锂离子电池负极。与纯Li_(2)Ni_(2)(MoO_(4))3相比,Li_(2)Ni_(2)(MoO_(4))3@C具有优异的电化学性能,在电流密度为200 mA ·g^(-1)时,50周循环后,可逆容量高达845 mAh·g^(-1)。值得注意的是,Li_(2)Ni_(2)(MoO_(4))3@C的首周库仑效率高达85%。此外,运用循环伏安法对Li_(2)Ni_(2)(MoO_(4))3@C复合物存储锂行为进行了初步探索。