Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three...Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier-Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a "beating" behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.展开更多
基金Supported by National Natural Science Foundation of China(51309123)Jiangsu Province Natural Science Research Projects in Colleges and Universities(13KJB570002)+2 种基金the Open Foundation of State Key Laboratory of Ocean Engineering(1407)Sponsored by ‘Qing Lan Project’ of Colleges and Universities in Jiangsu ProvinceAcademic Program Development of Jiangsu Higher Education Institutions(PAPD)
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51309123 and 51279104)the Jiangsu Province Natural Science Research Projects in Colleges and Universities(Grant No.13KJB570002)+2 种基金the Open Foundation of State Key Laboratory of Ocean Engineering(Grant No.1407)the"Qing Lan Project"of Colleges and Universities in Jiangsu Provincethe Academic Program Development of Jiangsu Higher Education Institutions(Grant No.APD)
文摘Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier-Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a "beating" behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.