We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circu...We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circular phonon dichroism occur in the presence of uniform(staggered)intrinsic spin–orbit coupling and ferromagnetic(antiferromagnetic)exchange coupling.All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point.Our finding provides new possibilities to use phonon dichroism to identify the form of spin–orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates.展开更多
Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic ins...Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11904062)the Starting Research Fund from Guangzhou University(Grant No.RQ2020076)Guangzhou Basic Research Program,jointed funded by Guangzhou University(Grant No.202201020186)。
文摘We systematically investigate the phonon dichroism in proximitized graphene with broken time-reversal symmetry.We find that in the absence of any type of spin–orbit coupling,phonon dichroism vanishes.Linear and circular phonon dichroism occur in the presence of uniform(staggered)intrinsic spin–orbit coupling and ferromagnetic(antiferromagnetic)exchange coupling.All these situations can be distinguished by their specific behaviors of phonon absorption at the transition point.Our finding provides new possibilities to use phonon dichroism to identify the form of spin–orbit coupling and exchange coupling in proximitized graphene on various magnetic substrates.
基金Project supported by the National Natural Science Foundation of China(Grant No.11904062)the Starting Research Fund from Guangzhou University(Grant No.RQ2020076)Guangzhou Basic Research Program,jointed funded by Guangzhou University(Grant No.202201020186)。
文摘Control and detection of antiferromagnetic topological materials are challenging since the total magnetization vanishes.Here we investigate the magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulator Mn Bi2Te4.We find that by breaking the combined mirror symmetries with either perpendicular electric field or external magnetic moment,Kerr and Faraday effects occur.Under perpendicular electric field,antiferromagnetic topological insulators(AFMTI)show sharp peaks at the interband transition threshold,whereas trivial insulators show small adjacent positive and negative peaks.Gate voltage and Fermi energy can be tuned to reveal the differences between AFMTI and trivial insulators.We find that AFMTI with large antiferromagnetic order can be proposed as a pure magneto-optical rotator due to sizable Kerr(Faraday)angles and vanishing ellipticity.Under external magnetic moment,AFMTI and trivial insulators are significantly different in the magnitude of Kerr and Faraday angles and ellipticity.For the qualitative behaviors,AFMTI shows distinct features of Kerr and Faraday angles when the spin configurations of the system change.These phenomena provide new possibilities to optically detect and manipulate the layered topological antiferromagnets.