期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多视图卷积轻量级脑肿瘤分割算法 被引量:2
1
作者 李锵 关欣 《激光与光电子学进展》 CSCD 北大核心 2023年第10期192-199,共8页
脑肿瘤分割对医学图像处理领域发展与人类健康都具有积极意义。针对三维卷积神经网络存在复杂度大且对硬件设备要求高等问题,提出一种多视图卷积轻量级脑肿瘤分割算法。首先使用复用器模块有效融合各通道间的信息,并为模型增加提取非线... 脑肿瘤分割对医学图像处理领域发展与人类健康都具有积极意义。针对三维卷积神经网络存在复杂度大且对硬件设备要求高等问题,提出一种多视图卷积轻量级脑肿瘤分割算法。首先使用复用器模块有效融合各通道间的信息,并为模型增加提取非线性特征的能力。其次使用伪三维卷积分别从轴向位、矢状位和冠状位进行卷积,并加入组卷积以节约计算资源和降低设备显存使用。最后使用可训练参数权衡不同视图下提取的特征的重要性,提高模型分割精度。此外,实验使用分布式数据并行方法训练模型,以提升图形处理器的利用率。在2019年脑肿瘤分割大赛公开数据集上的实验结果表明,所提算法的平均Dice相似度系数仅低于第一名算法2.52个百分点,然而参数量与浮点运算次数分别降低了84.83%和96.67%,且平均Dice相似度系数高于第二名算法0.05%。通过对比实验分析,验证了所提算法的精确与轻量,为脑肿瘤分割模型的广泛应用提供了可能性。 展开更多
关键词 多视图 卷积神经网络 脑肿瘤分割 深度学习 轻量级
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部