期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CNN-Attention-BP的降水发生预测研究 被引量:8
1
作者 吴香华 华亚 +2 位作者 官元红 王巍巍 刘端阳 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期148-155,共8页
在综合分析降水统计预测模型特点的基础上,提出一种基于Attention机制、卷积神经网络(CNN)和BP神经网络的CNN-Attention-BP组合模型,并对1961—2020年不同气候类型的长春站、白城站、延吉站夏季降水进行实证分析.首先,运用卷积神经网络... 在综合分析降水统计预测模型特点的基础上,提出一种基于Attention机制、卷积神经网络(CNN)和BP神经网络的CNN-Attention-BP组合模型,并对1961—2020年不同气候类型的长春站、白城站、延吉站夏季降水进行实证分析.首先,运用卷积神经网络对6—8月20—次日20时降水量、平均气压、平均风速、平均气温和平均相对湿度进行特征学习,利用Attention机制来确定气象影响因素对降水预测的权重;然后,使用BP神经网络进行降水发生预测,选用准确率、交叉熵损失函数和F1-score来综合评价CNN-Attention-BP组合模型的性能.最后,将单一的支持向量机、多层感知机和卷积神经网络模型与组合模型进行比较分析.结果表明,CNN-Attention-BP组合模型具有自主学习和关注更重要信息的特征,能够有效提高吉林省夏季降水发生模型的预测能力,在样本越均衡、降水频率越接近于0.5的站点,预测精度越高,准确率最高可达88.4%.CNN-Attention-BP组合模型的准确率相较于其他单一模型最高可以提高近17个百分点. 展开更多
关键词 降水预测 卷积神经网络 Attention机制 BP神经网络 交叉熵损失函数
下载PDF
基于CEEMDAN-SE-ARIMA组合模型的东北夏季降水预测 被引量:4
2
作者 吴香华 陈以祺 +2 位作者 官元红 田心童 华亚 《大气科学学报》 CSCD 北大核心 2023年第2期205-216,共12页
针对传统时间序列模型无法有效预测模态混叠数据的不足,本文提出了一种基于CEEMDAN-SE-ARIMA的组合模型,并且对东北地区2016—2020年夏季降水量进行了实证分析。首先,基于完全自适应集合经验模态分解方法,将降水时间序列分解为多个本征... 针对传统时间序列模型无法有效预测模态混叠数据的不足,本文提出了一种基于CEEMDAN-SE-ARIMA的组合模型,并且对东北地区2016—2020年夏季降水量进行了实证分析。首先,基于完全自适应集合经验模态分解方法,将降水时间序列分解为多个本征模态分量,并根据不同分量样本熵的计算结果进行分量序列重构。然后,针对每一个重构分量,构建自回归移动平均预测模型。最后,将各分量的预测值进行叠加,得到组合模型的预测值。此外,还构建了ARIMA单一模型和其他组合模型,旨在与CEEMDAN-SE-ARIMA组合模型对比。结果表明:CEEMDAN-SE-ARIMA组合模型考虑了时间序列的模态混叠特征,能有效提高东北地区夏季降水时序模型的预测能力,具有良好的预测应用价值。预测结果较单一模型和其他组合模型均有所提高,MASE降低了0.02~0.91 mm,RMSE降低了0.80~130.49 mm,MAE降低了2.52~129.84 mm,MAPE降低了1.08~35.53 mm。CEEMDAN-SE-ARIMA模型在降水变率较小的西北部区域预测效果更好,对东南部区域的极值分布中心预测较为准确。 展开更多
关键词 东北夏季降水 模态混叠 CEEM DAN 样本熵 ARIM A
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部