期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
同化叶面积指数和蒸散发双变量的冬小麦产量估测方法 被引量:12
1
作者 曹春香 +4 位作者 黄健熙 田丽燕 马鸿元 苏伟 倪希亮 《地球信息科学学报》 CSCD 北大核心 2015年第7期871-882,共12页
同化遥感信息到作物生长过程模拟模型,是估测区域作物产量的重要方法之一。同化变量的选取对同化结果精度至关重要。本文在标定WOFOST作物模型参数的基础上,优化了WOFOST模型的默认灌溉参数。利用ET和LAI作为同化变量,分别构建了时间序... 同化遥感信息到作物生长过程模拟模型,是估测区域作物产量的重要方法之一。同化变量的选取对同化结果精度至关重要。本文在标定WOFOST作物模型参数的基础上,优化了WOFOST模型的默认灌溉参数。利用ET和LAI作为同化变量,分别构建了时间序列趋势信息的代价函数和四维变分代价函数;采用SCE-UA算法最小化代价函数,重新初始化WOFOST模型初始参数——作物初始干物质重、作物35℃生命期和灌溉量。最后利用MODIS LAI产品(MCD15A3)、MODIS ET产品(MOD16A2),同化到作物模型估测产量,并对比分析了水分胁迫模式下同化单变量(ET或LAI)和同化双变量(ET和LAI)的估产精度。结果表明:同化双变量ET和LAI的策略,优于同化单变量LAI或ET,双变量策略的冬小麦产量估测精度为R2=0.432,RMSE=721 kg/hm2;单独同化高精度LAI对提高估产精度具有重要作用,其冬小麦产量估测精度为R2=0.408,RMSE=925 kg/hm2;单独同化ET的趋势信息改善了WOFOST模型模拟水分平衡的参数,但是,产量估测精度(R2=0.013,RMSE=1134 kg/hm2)与模型模拟估测产量精度(R2=0.006,RMSE=1210 kg/hm2)相比改善效果有限。本研究为其他区域的遥感数据与作物模型的双变量数据同化的作物产量估测研究提供了参考价值。 展开更多
关键词 蒸散发 叶面积指数 同化 WOFOST作物模型 估产
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部