Considering the maximum elastic limitation of the used material with newly advanced technology,the study focuses on optimization of a mortar barrel structure by thinning the wall to reduce the weight.Firstly,static an...Considering the maximum elastic limitation of the used material with newly advanced technology,the study focuses on optimization of a mortar barrel structure by thinning the wall to reduce the weight.Firstly,static analysis of barrel structure parameters is done based on finite element analysis(FEA)method and 3Dsolid model of the barrel is established based on Unigraphics NX(UG).Secondly,the 3Dsolid model is simplified and transplanted to ANSYS for barrel wall pressure calculation.Thus,the change curves of the stress exerted on the barrel wall at different locations perpendicular to the axial direction with wall thinning are drawn.By analyzing all possible optimization schemes,the optimal design that enables the barrel to have higher bearing capacity is got.The optimized barrel structure is verified by means of fluid-solid coupling dynamic response analysis.The results show that the static analysis results are closer to real stress conditions than dynamic analysis results.Finally,the barrel weight is reduced by 13%after simulation optimization and the light weight design of the barrel is effective and reliable.展开更多
文摘Considering the maximum elastic limitation of the used material with newly advanced technology,the study focuses on optimization of a mortar barrel structure by thinning the wall to reduce the weight.Firstly,static analysis of barrel structure parameters is done based on finite element analysis(FEA)method and 3Dsolid model of the barrel is established based on Unigraphics NX(UG).Secondly,the 3Dsolid model is simplified and transplanted to ANSYS for barrel wall pressure calculation.Thus,the change curves of the stress exerted on the barrel wall at different locations perpendicular to the axial direction with wall thinning are drawn.By analyzing all possible optimization schemes,the optimal design that enables the barrel to have higher bearing capacity is got.The optimized barrel structure is verified by means of fluid-solid coupling dynamic response analysis.The results show that the static analysis results are closer to real stress conditions than dynamic analysis results.Finally,the barrel weight is reduced by 13%after simulation optimization and the light weight design of the barrel is effective and reliable.