期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的葡萄叶片病害检测方法
被引量:
40
1
作者
刘
阗
宇
冯全
杨森
《东北农业大学学报》
CAS
CSCD
北大核心
2018年第3期73-83,共11页
文章采用多角度建议区域Faster-RCNN准确定位图像中葡萄叶片,提出一种基于卷积神经网络的病害检测方法,检测图像叶片病害。相比直接检测图像病害,可去除背景因素对病害区域干扰,降低错误率。结果表明,该算法对自然条件下葡萄病害成像适...
文章采用多角度建议区域Faster-RCNN准确定位图像中葡萄叶片,提出一种基于卷积神经网络的病害检测方法,检测图像叶片病害。相比直接检测图像病害,可去除背景因素对病害区域干扰,降低错误率。结果表明,该算法对自然条件下葡萄病害成像适应性良好。文章统计6种不同条件下拍摄图像,对一般叶片检测算法平均mAP为75.52%,显著高于传统算法。在病害检测时,采用两种策略:从一幅图像中检测到每个单个叶片,或将整幅图像对叶片取掩模后,作为下一级病害检测器输入图像。结果表明,第一种方法,6种常见葡萄病害平均mAP为66.47%,其中褐斑病与白粉病mAP超过70%;第二种方法,病害检测平均mAP为51.44%,但平均检测时间节约75%。两种方法性能均优于在原始图像上直接病害检测方法。
展开更多
关键词
葡萄病害
卷积神经网络
病害检测
多角度建议区域
叶片检测
叶片掩模
下载PDF
职称材料
基于时序图像跟踪的葡萄叶片病害动态监测
被引量:
16
2
作者
乔虹
冯全
+1 位作者
张芮
刘
阗
宇
《农业工程学报》
EI
CAS
CSCD
北大核心
2018年第17期167-175,共9页
为提高自然成像条件下的酿酒葡萄图像中病害识别的可靠性,对时序叶片图像作连续病害检测并监测病斑变化情况。首先,在每一天利用Faster R-CNN算法对摄像机视场中葡萄叶片进行检测,对检测到的叶片采用改进卡尔曼滤波法进行跟踪,以获得叶...
为提高自然成像条件下的酿酒葡萄图像中病害识别的可靠性,对时序叶片图像作连续病害检测并监测病斑变化情况。首先,在每一天利用Faster R-CNN算法对摄像机视场中葡萄叶片进行检测,对检测到的叶片采用改进卡尔曼滤波法进行跟踪,以获得叶片正面图像。为了实现多叶片跟踪和解决由遮挡而造成的跟踪失败问题,该文在卡尔曼滤波和匈牙利算法基础上,结合运动测度和深度外观信息对跟踪目标进行匹配,运动匹配时采用马氏距离,外观匹配方面采用最小余弦距离。其次,将不同日期的叶片正面图像做SIFT(scale-invariant feature transform)匹配,找到同一叶片按日期排列的一组序列图像,并在序列图像中通过深度学习技术进行病害识别。最后,通过监测叶片序列图像上病斑相对面积变化或病斑数量是否增加来确认病害的存在。该文对提出的跟踪算法、叶片匹配算法和序列图像上病害识别的精度进行了测试,试验表明:跟踪算法平均多目标跟踪准确度为73.6%,多目标跟踪精度为74.6%,基于判别模型颜色特征的传统跟踪算法两指标分别为14.3%和61.3%;基于SIFT特征的叶片匹配在识别同一叶片时的精度达到了90.9%;病害监测方面,虚警综合排除率(马修斯相关系数)达到了84.3%。该文的方法可以排除一些虚假病害,病害监测的可靠性有所提高,可适用于自然条件下葡萄病害的连续在线监测。
展开更多
关键词
图像处理
病害
监测
FASTER
R-CNN
动态监测
叶片匹配
跟踪
下载PDF
职称材料
基于卷积神经网络的葡萄叶片检测
被引量:
10
3
作者
刘
阗
宇
冯全
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第4期505-512,共8页
为解决酿酒葡萄生长状态的在线自动监测问题,该文提出了一种基于卷积神经网络的葡萄叶片检测算法。通过多层卷积的方式产生特征图,使原图像的特征增强并且降低了图像噪声,在最后一层特征图中,通过使用RPN(Region proposal network)生成...
为解决酿酒葡萄生长状态的在线自动监测问题,该文提出了一种基于卷积神经网络的葡萄叶片检测算法。通过多层卷积的方式产生特征图,使原图像的特征增强并且降低了图像噪声,在最后一层特征图中,通过使用RPN(Region proposal network)生成建议区域,然后进行池化操作,最后进行边框回归与分类。该算法在有叶片遮挡、光照阴影、病害叶片等复杂背景因素下对葡萄叶片有良好的检测效果。试验表明,该算法在复杂背景下对葡萄叶片的检测率为87.2%,误检率为7.2%。
展开更多
关键词
葡萄叶片检测
卷积神经网络
建议区域
下载PDF
职称材料
题名
基于卷积神经网络的葡萄叶片病害检测方法
被引量:
40
1
作者
刘
阗
宇
冯全
杨森
机构
甘肃农业大学机电工程学院
出处
《东北农业大学学报》
CAS
CSCD
北大核心
2018年第3期73-83,共11页
基金
国家自然科学基金项目(61461005)
文摘
文章采用多角度建议区域Faster-RCNN准确定位图像中葡萄叶片,提出一种基于卷积神经网络的病害检测方法,检测图像叶片病害。相比直接检测图像病害,可去除背景因素对病害区域干扰,降低错误率。结果表明,该算法对自然条件下葡萄病害成像适应性良好。文章统计6种不同条件下拍摄图像,对一般叶片检测算法平均mAP为75.52%,显著高于传统算法。在病害检测时,采用两种策略:从一幅图像中检测到每个单个叶片,或将整幅图像对叶片取掩模后,作为下一级病害检测器输入图像。结果表明,第一种方法,6种常见葡萄病害平均mAP为66.47%,其中褐斑病与白粉病mAP超过70%;第二种方法,病害检测平均mAP为51.44%,但平均检测时间节约75%。两种方法性能均优于在原始图像上直接病害检测方法。
关键词
葡萄病害
卷积神经网络
病害检测
多角度建议区域
叶片检测
叶片掩模
Keywords
grape disease
convolutional neural network
diseases detection
multiple angles proposal
leaf detection
leaf mask
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于时序图像跟踪的葡萄叶片病害动态监测
被引量:
16
2
作者
乔虹
冯全
张芮
刘
阗
宇
机构
甘肃农业大学机电工程学院
甘肃农业大学水利水电工程学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2018年第17期167-175,共9页
基金
国家自然基金(61461005)
甘肃省科技重大专项计划(1502NKDF023)
文摘
为提高自然成像条件下的酿酒葡萄图像中病害识别的可靠性,对时序叶片图像作连续病害检测并监测病斑变化情况。首先,在每一天利用Faster R-CNN算法对摄像机视场中葡萄叶片进行检测,对检测到的叶片采用改进卡尔曼滤波法进行跟踪,以获得叶片正面图像。为了实现多叶片跟踪和解决由遮挡而造成的跟踪失败问题,该文在卡尔曼滤波和匈牙利算法基础上,结合运动测度和深度外观信息对跟踪目标进行匹配,运动匹配时采用马氏距离,外观匹配方面采用最小余弦距离。其次,将不同日期的叶片正面图像做SIFT(scale-invariant feature transform)匹配,找到同一叶片按日期排列的一组序列图像,并在序列图像中通过深度学习技术进行病害识别。最后,通过监测叶片序列图像上病斑相对面积变化或病斑数量是否增加来确认病害的存在。该文对提出的跟踪算法、叶片匹配算法和序列图像上病害识别的精度进行了测试,试验表明:跟踪算法平均多目标跟踪准确度为73.6%,多目标跟踪精度为74.6%,基于判别模型颜色特征的传统跟踪算法两指标分别为14.3%和61.3%;基于SIFT特征的叶片匹配在识别同一叶片时的精度达到了90.9%;病害监测方面,虚警综合排除率(马修斯相关系数)达到了84.3%。该文的方法可以排除一些虚假病害,病害监测的可靠性有所提高,可适用于自然条件下葡萄病害的连续在线监测。
关键词
图像处理
病害
监测
FASTER
R-CNN
动态监测
叶片匹配
跟踪
Keywords
image processing
disease
monitoring
Faster R-CNN
dynamic monitoring
leaf match
tracking
分类号
S43 [农业科学—农业昆虫与害虫防治]
TP391.41 [农业科学—植物保护]
下载PDF
职称材料
题名
基于卷积神经网络的葡萄叶片检测
被引量:
10
3
作者
刘
阗
宇
冯全
机构
甘肃农业大学工学院
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第4期505-512,共8页
基金
国家自然科学基金资助项目(61461005)
文摘
为解决酿酒葡萄生长状态的在线自动监测问题,该文提出了一种基于卷积神经网络的葡萄叶片检测算法。通过多层卷积的方式产生特征图,使原图像的特征增强并且降低了图像噪声,在最后一层特征图中,通过使用RPN(Region proposal network)生成建议区域,然后进行池化操作,最后进行边框回归与分类。该算法在有叶片遮挡、光照阴影、病害叶片等复杂背景因素下对葡萄叶片有良好的检测效果。试验表明,该算法在复杂背景下对葡萄叶片的检测率为87.2%,误检率为7.2%。
关键词
葡萄叶片检测
卷积神经网络
建议区域
Keywords
detecting grape leaves
convolutional neural network
region proposal
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的葡萄叶片病害检测方法
刘
阗
宇
冯全
杨森
《东北农业大学学报》
CAS
CSCD
北大核心
2018
40
下载PDF
职称材料
2
基于时序图像跟踪的葡萄叶片病害动态监测
乔虹
冯全
张芮
刘
阗
宇
《农业工程学报》
EI
CAS
CSCD
北大核心
2018
16
下载PDF
职称材料
3
基于卷积神经网络的葡萄叶片检测
刘
阗
宇
冯全
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2017
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部