期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Magnetic diagnostics layout design for CFETR plasma equilibrium reconstruction
1
作者 于庆泽 黄耀 +6 位作者 罗正平 汪悦航 芮望颐 吴凯 肖炳甲 李建刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期537-543,共7页
Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This... Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This study designs and optimizes the magnetic diagnostics layout for the reconstruction of the equilibrium of the plasma according to the scientific objectives,engineering design parameters,and limitations of the Chinese Fusion Engineering Test Reactor(CFETR).Based on the CFETR discharge simulation,magnetic measurement data are employed to reconstruct consistent plasma equilibrium parameters,and magnetic diagnostics'number and position are optimized by truncated Singular value decomposition,verifying the redundancy reliability of the magnetic diagnostics layout design.This provides a design solution for the layout of the magnetic diagnostics system required to control the plasma equilibrium of CFETR,and the developed design and optimization method can provide effective support to design magnetic diagnostics systems for future magnetic confinement fusion devices. 展开更多
关键词 plasma equilibrium reconstruction EFIT code flux loops and magnetic probes optimization
下载PDF
Integrated data analysis on the electron temperature profile of HL-2A with the Bayesian probability inference method
2
作者 Wenan PAN Tianbo WANG +10 位作者 Zhibin WANG Yonghao YANG Hao WU Geert VERDOOLAEGE Zengchen YANG Chunhua LIU Wenping GUO Bingli LI Zijie LIU Wenbin WU Min XU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期237-252,共16页
Data analysis on tokamak plasmas is mainly based on various diagnostic systems,which are usually modularized and independent of each other.This leads to a large amount of data not being fully and effectively exploited... Data analysis on tokamak plasmas is mainly based on various diagnostic systems,which are usually modularized and independent of each other.This leads to a large amount of data not being fully and effectively exploited so that it is not conducive to revealing the deep physical mechanism.In this work,Bayesian probability inference with machine learning methods have been applied to the electron cyclotron emission and Thomson scattering diagnostic systems on HL-2A/2M,and the effects of integrated data analysis(IDA)on the electron temperature of HL-2A with Bayesian probability inference are demonstrated.A program is developed to infer the whole electron temperature profile with a confidence interval,and the program can be applied in online analysis.The IDA results show that the full profile of the electron temperature can be obtained and the diagnostic information is more comprehensive and abundant with IDA.The inference models for electron temperature analysis are established and the developed programs will serve as an experimental data analysis tool for HL-2A/2M in the near future. 展开更多
关键词 electron cyclotron emission Thomson scattering electron temperature Bayesian inference
下载PDF
Tomography of emissivity for Doppler coherence imaging spectroscopy diagnostic in HL-2A 被引量:1
3
作者 Bingli LI Tianbo WANG +7 位作者 Lin NIE Ting LONG Zijie LIU Hao WU Rui KE Zhanhui WANG Yi YU Min XU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期34-48,共15页
A newly developed Doppler coherence imaging spectroscopy(CIS)technique has been implemented in the HL-2 A tokamak for carbon impurity emissivity and flow measurement.In CIS diagnostics,the emissivity and flow profiles... A newly developed Doppler coherence imaging spectroscopy(CIS)technique has been implemented in the HL-2 A tokamak for carbon impurity emissivity and flow measurement.In CIS diagnostics,the emissivity and flow profiles inside the plasma are measured by a camera from the line-integrated emissivity and line-averaged flow,respectively.A standard inference method,called tomographic inversion,is necessary.Such an inversion is relatively challenging due to the ill-conditioned nature.In this article,we report the recent application and comparison of two different tomography algorithms,Gaussian process tomography and Tikhonov tomography,on light intensity measured by CIS,including feasibility and benchmark studies.Finally,the tomographic results for real measurement data in HL-2A are presented. 展开更多
关键词 Bayesian inference Gaussian process tomography HL-2A Tikhonov tomography CIS
下载PDF
Plasma current tomography for HL-2A based on Bayesian inference
4
作者 王天博 +5 位作者 吴木泉 罗正平 王硕 孙腾飞 肖炳甲 李建刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期165-173,共9页
An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to rec... An accurate plasma current profile has irreplaceable value for the steady-state operation of the plasma.In this study,plasma current tomography based on Bayesian inference is applied to an HL-2A device and used to reconstruct the plasma current profile.Two different Bayesian probability priors are tried,namely the Conditional Auto Regressive(CAR)prior and the Advanced Squared Exponential(ASE)kernel prior.Compared to the CAR prior,the ASE kernel prior adopts nonstationary hyperparameters and introduces the current profile of the reference discharge into the hyperparameters,which can make the shape of the current profile more flexible in space.The results indicate that the ASE prior couples more information,reduces the probability of unreasonable solutions,and achieves higher reconstruction accuracy. 展开更多
关键词 plasma current tomography Bayesian inference machine learning Gaussian distribution
下载PDF
融合残差网络与自注意力机制的心律失常分类 被引量:1
5
作者 袁成成 +1 位作者 王常青 杨飞 《生物医学工程学杂志》 EI CAS 北大核心 2023年第3期474-481,共8页
在心血管疾病的诊断中,心电信号的分析一直起到至关重要的作用。目前如何利用算法有效识别出信号中的异常心拍,仍然是心电信号分析领域中的难点。本文将深度残差网络与自注意力机制相结合,提出了一种能够自动识别出异常心拍的分类模型,... 在心血管疾病的诊断中,心电信号的分析一直起到至关重要的作用。目前如何利用算法有效识别出信号中的异常心拍,仍然是心电信号分析领域中的难点。本文将深度残差网络与自注意力机制相结合,提出了一种能够自动识别出异常心拍的分类模型,该模型首先基于残差结构设计了18层卷积神经网络,用来充分提取信号中的局部特征,之后再结合双向门控循环单元,用于提高网络对于时序特征的挖掘能力,最后引入自注意力机制为提取到的每一个特征赋予区分化的权重,协助模型在训练的过程中更有效地关注重要特征,以此来获得较高的分类精度。本研究采用多种方式进行数据增强,缓解了由于数据不平衡问题对模型效果带来的影响。本研究实验数据来源于麻省理工学院与贝斯以色列医院(MIT-BIH)构建的心律失常数据库,最终结果表明,研究提出的模型在原始数据集上达到了98.33%的总体准确率,在优化后的数据集中达到了99.12%的总体准确率,证明了该模型在心电信号分类方面拥有良好的效果,具备应用到便携式心电检测设备的潜在价值。 展开更多
关键词 心电信号分类 残差网络 双向门循环控制单元 自注意力机制
原文传递
基于CNN-BiLSTM-Attention神经网络的心电信号分类研究
6
作者 袁成成 +1 位作者 王常青 杨飞 《计算机与数字工程》 2022年第11期2478-2484,共7页
心电信号分析在心血管疾病的诊断中一直起到至关重要的作用,为了能在不同类型的心电信号中实现自动分类、识别异常心率,研究并提出了一种基于深度学习的分类模型,用来自动识别5种不同类型的心拍。研究首先利用卷积神经网络中的局部感知... 心电信号分析在心血管疾病的诊断中一直起到至关重要的作用,为了能在不同类型的心电信号中实现自动分类、识别异常心率,研究并提出了一种基于深度学习的分类模型,用来自动识别5种不同类型的心拍。研究首先利用卷积神经网络中的局部感知野特性来提取信号中的局部特征,再结合双向长短期记忆网络捕获心电序列中的前后依赖关系,最后引入注意力机制为提取到的每一个特征赋予区分化的权重,让模型在训练的过程中充分关注被分配了更高权重值的主要特征,增强模型的分类能力。针对类别数据不平衡的问题,利用合成少数过采样技术(SMOTE)进行数据增强,进一步优化了模型的分类效果。研究使用MIT-BIH作为实验数据,通过对实验结果的对比分析,验证了模型在心电信号分类方面的可行性。 展开更多
关键词 心电信号分析 特征提取 卷积神经网络 注意力机制
下载PDF
内陆核电发展形势分析 被引量:1
7
作者 《环球市场信息导报》 2016年第25期99-99,共1页
我国核电事业向内陆发展是历史的必然选择,本文结合国内外内陆核电站建设现状,深入分析了我国内陆核电建设中存在的问题,指出了国内内陆核电建设的关键。文章强调,内陆核电事业发展要避免盲目建设,必须根据电网结构和当地环境评估内陆... 我国核电事业向内陆发展是历史的必然选择,本文结合国内外内陆核电站建设现状,深入分析了我国内陆核电建设中存在的问题,指出了国内内陆核电建设的关键。文章强调,内陆核电事业发展要避免盲目建设,必须根据电网结构和当地环境评估内陆核电站建设的价值。本文未来内陆核电的发展提供了一定的参考。 展开更多
关键词 核电发展 核电建设 核电站建设 核电事业 核电站安全 电网结构 环境评估 核电装机容量 形势分析 核电技术
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部