期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于静脉关键特征和AdaFace损失的轻量级指静脉识别算法
1
作者 王一丁 《计算机应用研究》 CSCD 北大核心 2024年第3期933-938,960,共7页
基于深度学习的指静脉识别方法通常需要大量的计算资源,限制了其在嵌入设备上的推广和普及,采用轻量级网络又面临模型参数减少导致准确率下降的问题,为此提出一种基于指静脉关键特征和AdaFace损失的轻量级识别算法。在MicroNet框架中,... 基于深度学习的指静脉识别方法通常需要大量的计算资源,限制了其在嵌入设备上的推广和普及,采用轻量级网络又面临模型参数减少导致准确率下降的问题,为此提出一种基于指静脉关键特征和AdaFace损失的轻量级识别算法。在MicroNet框架中,首先提出一种FMixconv卷积来替代原网络中的深度卷积,减少参数的同时可以获得静脉特征的多尺度信息;其次引入轻量级注意力模块CA模块,从空间和通道上聚焦于静脉特征的关键信息;最后在损失函数中加入AdaFace损失,通过特征范数对图像质量进行评价,以减少图像质量下降对训练的影响。该算法在SDUMLA-HMT、FV-USM和自建数据集上的识别准确率达到99.84%、99.39%和99.42%,而参数量仅有0.82 M。实验结果表明,该算法在准确率和参数量大小上均领先于其他方法。 展开更多
关键词 指静脉识别 轻量级网络 MicroNet AdaFace损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部