期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于数据优化的改进深度学习方法光伏出力超短期预测模型
被引量:
6
1
作者
雷前
潘妍
+3 位作者
徐任超
黄继明
刘
巽
梁
潘榕
《电力大数据》
2021年第7期49-55,共7页
为解决光伏出力超短期预测模型精度不足和运算速度慢的问题,本文提出了一种基于数据优化的改进深度学习方法光伏出力超短期预测模型。首先,为提升模型的计算效率,通过数据预处理和动态指数平滑法对样本数据进行优化;随后,应用卷积神经...
为解决光伏出力超短期预测模型精度不足和运算速度慢的问题,本文提出了一种基于数据优化的改进深度学习方法光伏出力超短期预测模型。首先,为提升模型的计算效率,通过数据预处理和动态指数平滑法对样本数据进行优化;随后,应用卷积神经网络算法(CNN)构建的多阶卷积通道合并运算挖掘不同光伏电场间的时空耦合关系,得到反映多光伏电场光伏出力的融合特征值,将得到的融合特征值作为输入,利用改进深度学习算法进行分析,输出不同天气情况下的光伏超短期预测结果,以提高模型的预测精度;最后,基于实测光伏出力数据进行超短期预测,验证所提模型的有效性和准确性。算例分析表明,所提预测模型相比传统的超短期模型具有计算速度快和预测准确度高的优点。
展开更多
关键词
光伏出力
超短期预测
数据优化
改进深度学习
卷积通道
下载PDF
职称材料
题名
基于数据优化的改进深度学习方法光伏出力超短期预测模型
被引量:
6
1
作者
雷前
潘妍
徐任超
黄继明
刘
巽
梁
潘榕
机构
国网浙江宁波市鄞州区供电有限公司
出处
《电力大数据》
2021年第7期49-55,共7页
文摘
为解决光伏出力超短期预测模型精度不足和运算速度慢的问题,本文提出了一种基于数据优化的改进深度学习方法光伏出力超短期预测模型。首先,为提升模型的计算效率,通过数据预处理和动态指数平滑法对样本数据进行优化;随后,应用卷积神经网络算法(CNN)构建的多阶卷积通道合并运算挖掘不同光伏电场间的时空耦合关系,得到反映多光伏电场光伏出力的融合特征值,将得到的融合特征值作为输入,利用改进深度学习算法进行分析,输出不同天气情况下的光伏超短期预测结果,以提高模型的预测精度;最后,基于实测光伏出力数据进行超短期预测,验证所提模型的有效性和准确性。算例分析表明,所提预测模型相比传统的超短期模型具有计算速度快和预测准确度高的优点。
关键词
光伏出力
超短期预测
数据优化
改进深度学习
卷积通道
Keywords
photovoltaic output
ultra-short-term forecast
data optimization
improved deep learning
convolution channel
分类号
TM744 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于数据优化的改进深度学习方法光伏出力超短期预测模型
雷前
潘妍
徐任超
黄继明
刘
巽
梁
潘榕
《电力大数据》
2021
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部