In our published letter,[1]we have identified a minor error in Figs.2 and 3.Instead,we have 2111 events in these two plots with 646,249,382,and 834 events in Run 9(20.0 ton·day),Run 10(19.4 ton·day),Run 11–...In our published letter,[1]we have identified a minor error in Figs.2 and 3.Instead,we have 2111 events in these two plots with 646,249,382,and 834 events in Run 9(20.0 ton·day),Run 10(19.4 ton·day),Run 11–1(24.2 ton·day),and Run 11–2(37.1 ton·day).The mistake is due to an incorrect application of a small energy non-linearity(known as the BLS non-linearity)in making plots,but has no impact to the final results.Figures 2 and 3 are now updated in this note.展开更多
We report the Neutrino-less Double Beta Decay(NLDBD) search results from PandaX-Ⅱ dual-phase liquid xenon time projection chamber.The total live time used in this analysis is 403.1 days from June 2016 to August2018...We report the Neutrino-less Double Beta Decay(NLDBD) search results from PandaX-Ⅱ dual-phase liquid xenon time projection chamber.The total live time used in this analysis is 403.1 days from June 2016 to August2018.With NLDBD-optimized event selection criteria,we obtain a fiducial mass of 219 kg of natural xenon.The accumulated xenon exposure is 242 kg yr,or equivalently 22.2 kg yr of 136Xe exposure.At the region around 136Xe decay Q-value of 2458 keV,the energy resolution of PandaX-Ⅱ is 4.2%.We find no evidence of NLDBD in PandaX-Ⅱand establish a lower limit for decay half-life of 2.1×1023yr at the 90% confidence level,which corresponds to an effective Majorana neutrino mass mββ <(1.4-3.7) eV.This is the first NLDBD result reported from a dual-phase xenon experiment.展开更多
We report the dark matter search results obtained using the full 132 ton·day exposure of the PandaX-II experiment,including all data from March 2016 to August 2018.No significant excess of events is identified ab...We report the dark matter search results obtained using the full 132 ton·day exposure of the PandaX-II experiment,including all data from March 2016 to August 2018.No significant excess of events is identified above the expected background.Upper limits are set on the spin-independent dark matter-nucleon interactions.The lowest 90%confidence level exclusion on the spin-independent cross section is 2.2×10−46 cm2 at a WIMP mass of 30 GeV/c2.展开更多
We report a search for new physics signals using the low energy electron recoil events in the complete data set from PandaX-Ⅱ,in light of the recent event excess reported by XENON1 T.The data correspond to a total ex...We report a search for new physics signals using the low energy electron recoil events in the complete data set from PandaX-Ⅱ,in light of the recent event excess reported by XENON1 T.The data correspond to a total exposure of 100.7 ton·day with liquid xenon.With robust estimates of the dominant background spectra,we perform sensitive searches on solar axions and neutrinos with enhanced magnetic moment.It is found that the axionelectron coupling gAe<4.6×10^(-12) for an axion mass less than 0.1 keV/c^(2) and the neutrino magnetic moment μv<4.9×10^(-11)μB at 90%confidence level.The observed excess from XENON1 T is within our experimental constraints.展开更多
Ⅰ.INTRODUCTION The direct detection of dark matter particles,especially the weakly interacting massive particles(WIMPs),is being actively carried out by a couple of experiments worldwide[1].In recent years,the PandaX...Ⅰ.INTRODUCTION The direct detection of dark matter particles,especially the weakly interacting massive particles(WIMPs),is being actively carried out by a couple of experiments worldwide[1].In recent years,the PandaX-Ⅱ experiment located in the China Jinping Underground Laboratory(CJPL)[1-3],which uses the technology of dual phase liquid xenon time projection chambers(TPCs),has pushed the limits of the cross section between WIMPs and nucleons to a new level for most of the possible WIMP masses;other experiments of the same type are also being performed[4–10].展开更多
文摘In our published letter,[1]we have identified a minor error in Figs.2 and 3.Instead,we have 2111 events in these two plots with 646,249,382,and 834 events in Run 9(20.0 ton·day),Run 10(19.4 ton·day),Run 11–1(24.2 ton·day),and Run 11–2(37.1 ton·day).The mistake is due to an incorrect application of a small energy non-linearity(known as the BLS non-linearity)in making plots,but has no impact to the final results.Figures 2 and 3 are now updated in this note.
基金Supported by grants from the Ministry of Science and Technology of China(2016YFA0400301,2016YFA0400302)a Double Top-class grant from Shanghai Jiao Tong University,grants from National Science Foundation of China(11435008,11505112,11525522,11775142,11755001)+3 种基金grants from the Office of Science and Technology,Shanghai Municipal Government(11DZ2260700,16DZ2260200,18JC1410200)the support from the Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Educationsupported in part by the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)Hongwen Foundation in Hong Kong
文摘We report the Neutrino-less Double Beta Decay(NLDBD) search results from PandaX-Ⅱ dual-phase liquid xenon time projection chamber.The total live time used in this analysis is 403.1 days from June 2016 to August2018.With NLDBD-optimized event selection criteria,we obtain a fiducial mass of 219 kg of natural xenon.The accumulated xenon exposure is 242 kg yr,or equivalently 22.2 kg yr of 136Xe exposure.At the region around 136Xe decay Q-value of 2458 keV,the energy resolution of PandaX-Ⅱ is 4.2%.We find no evidence of NLDBD in PandaX-Ⅱand establish a lower limit for decay half-life of 2.1×1023yr at the 90% confidence level,which corresponds to an effective Majorana neutrino mass mββ <(1.4-3.7) eV.This is the first NLDBD result reported from a dual-phase xenon experiment.
基金Supported by a Double Top-class grant from Shanghai Jiao Tong University,grants from National Science Foundation of China(11435008,11525522,11775141,11755001)a grant from the Ministry of Science and Technology of China(2016YFA0400301)the Office of Science and Technology,Shanghai Municipal Government(11DZ2260700,16DZ2260200,18JC1410200)。
文摘We report the dark matter search results obtained using the full 132 ton·day exposure of the PandaX-II experiment,including all data from March 2016 to August 2018.No significant excess of events is identified above the expected background.Upper limits are set on the spin-independent dark matter-nucleon interactions.The lowest 90%confidence level exclusion on the spin-independent cross section is 2.2×10−46 cm2 at a WIMP mass of 30 GeV/c2.
基金Supported in part by the National Key R&D Program of China(Grant No.2016YFA0400301)the National Natural Science Foundation of China(Grant Nos.11525522,11775141,and 11755001)+5 种基金the Double First Class Plan of the Shanghai Jiao Tong University,the China Postdoctoral Science Foundation(Grant No.2018M640036)the Office of Science and Technology,Shanghai Municipal Government(Grant Nos.11DZ2260700,16DZ2260200,and 18JC1410200)the Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Education,for important supportsponsorship from the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)the Hongwen Foundation in Hong Kongthe Tencent Foundation in China。
文摘We report a search for new physics signals using the low energy electron recoil events in the complete data set from PandaX-Ⅱ,in light of the recent event excess reported by XENON1 T.The data correspond to a total exposure of 100.7 ton·day with liquid xenon.With robust estimates of the dominant background spectra,we perform sensitive searches on solar axions and neutrinos with enhanced magnetic moment.It is found that the axionelectron coupling gAe<4.6×10^(-12) for an axion mass less than 0.1 keV/c^(2) and the neutrino magnetic moment μv<4.9×10^(-11)μB at 90%confidence level.The observed excess from XENON1 T is within our experimental constraints.
基金Supported in part by a grant from the Ministry of Science and Technology of China(2016YFA0400301)National Science Foundation of China(12090060,12005131,11905128,11925502,11775141)Office of Science and Technology,Shanghai Municipal Government(18JC1410200)。
文摘Ⅰ.INTRODUCTION The direct detection of dark matter particles,especially the weakly interacting massive particles(WIMPs),is being actively carried out by a couple of experiments worldwide[1].In recent years,the PandaX-Ⅱ experiment located in the China Jinping Underground Laboratory(CJPL)[1-3],which uses the technology of dual phase liquid xenon time projection chambers(TPCs),has pushed the limits of the cross section between WIMPs and nucleons to a new level for most of the possible WIMP masses;other experiments of the same type are also being performed[4–10].