Using a simplified multi-configuration Dirac-Fock (SMCDF) scheme based on the multi-configuration Dirac-Fock (MCDF) theory, we study the systematic variations of the fine-structure splittings of n^2 D3/2,5/2 Rydbe...Using a simplified multi-configuration Dirac-Fock (SMCDF) scheme based on the multi-configuration Dirac-Fock (MCDF) theory, we study the systematic variations of the fine-structure splittings of n^2 D3/2,5/2 Rydberg series along the sodium-like isoelectronic sequence, i.e. the fine-structure orderings vary with increasing atomic number Z. The competition between the spin-orbit interactions and the exchange interactions due to relativistic effects of the nd orbital wavefunctions well explain such variations. Furthermore, the effect of Breit interactions which plays the secondary role is studied.展开更多
基金Supported by the Ministry of 'Science and Technology and Ministry of Education of China, the Key Grant Project of Chinese Ministry of Education (No 306020), the National Natural Science Foundation of China under Grant No 10734040, the National High-Tech ICF Committee in China and the Yin-He Super-computer Center, Institute of Applied Physics and Mathematics, Beijing, China, and the National Basic Research Programme of China under Grant No 2006CB921408.
文摘Using a simplified multi-configuration Dirac-Fock (SMCDF) scheme based on the multi-configuration Dirac-Fock (MCDF) theory, we study the systematic variations of the fine-structure splittings of n^2 D3/2,5/2 Rydberg series along the sodium-like isoelectronic sequence, i.e. the fine-structure orderings vary with increasing atomic number Z. The competition between the spin-orbit interactions and the exchange interactions due to relativistic effects of the nd orbital wavefunctions well explain such variations. Furthermore, the effect of Breit interactions which plays the secondary role is studied.