针对磁共振(magnetic resonance,MR)幅度图像中带有不易去除的与信号相关的莱斯(Rician)噪声问题,利用其复数图像中的实部与虚部所含噪声为不相关的加性高斯白噪声这一特性,代替对幅度图像直接去噪,提出将原始对偶字典学习(predual dict...针对磁共振(magnetic resonance,MR)幅度图像中带有不易去除的与信号相关的莱斯(Rician)噪声问题,利用其复数图像中的实部与虚部所含噪声为不相关的加性高斯白噪声这一特性,代替对幅度图像直接去噪,提出将原始对偶字典学习(predual dictionary learning,PDL)算法用于对MR复数图像的实部与虚部分别进行去噪,然后组合得到幅度图像的方法.经仿真实验和在HT-MRSI50-50(50 mm)1.2 T小动物核磁共振系统中的实际应用,证明所提方法较直接对幅度图像去噪取得更好的效果,在有效去除MR图像噪声的同时能较好地保持图像中的细节.与经典的字典学习算法核奇异值分解(kernel singular value decomposition,K-SVD)相比,PDL算法去噪效果优于K-SVD算法,而运算速度提高约5倍.与经典的基于非局部相似块的三维块匹配滤波(block-matching and 3D filtering,BM3D)算法相比,在噪声水平较低时PDL算法略优于BM3D算法,噪声水平较高时BM3D算法略优于PDL算法,两者总体比较接近.展开更多
In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p <...In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p < 1, and it penalizes small coefficients over a wider range meanwhile applies less bias to the larger coefficients.In this work, on the basis of two-level Bregman method with dictionary updating(TBMDU), we use the modified thresholding to minimize the non-convex function and propose the generalized TBMDU(GTBMDU) algorithm.The experimental results on magnetic resonance(MR) image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed algorithm can efficiently reconstruct the MR images and present advantages over the previous soft thresholding approaches.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoi...In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.展开更多
Recently, exploiting low rank property of the data accomplished by the non-convex optimization has shown great potential to decrease measurements for compressed sensing. In this paper, the low rank regularization is a...Recently, exploiting low rank property of the data accomplished by the non-convex optimization has shown great potential to decrease measurements for compressed sensing. In this paper, the low rank regularization is adopted to gradient similarity minimization, and applied for highly undersampled magnetic resonance imaging(MRI) reconstruction, termed gradient-based low rank MRI reconstruction(GLRMRI). In the proposed method,by incorporating the spatially adaptive iterative singular-value thresholding(SAIST) to optimize our gradient scheme, the deterministic annealing iterates the procedure efficiently and superior reconstruction performance is achieved. Extensive experimental results have consistently demonstrated that GLRMRI recovers both realvalued MR images and complex-valued MR data accurately, especially in the edge preserving perspective, and outperforms the current state-of-the-art approaches in terms of higher peak signal to noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.展开更多
In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic r...In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
Image denoising is a classical problem in image processing. Its essential goal is to preserve the image features and to reduce noise effiectively. The nonlocal means(NL-means) filter is a successful approach proposed ...Image denoising is a classical problem in image processing. Its essential goal is to preserve the image features and to reduce noise effiectively. The nonlocal means(NL-means) filter is a successful approach proposed in recent years due to its patch similarity comparison. However, the accuracy of similarities in this algorithm degrades when it suffiers from heavy noise. In this paper, we introduce feature similarities based on a multichannel filter into NL-means filter. The multi-bank based feature vectors of each pixel in the image are computed by convolving from various orientations and scales to Leung-Malik set(edge, bar and spot filters), and then the similarities based on this information are computed instead of pixel intensity. Experiments are carried out with Rician noise. The results demonstrate the superior performance of the proposed method. The wavelet-based method and traditional NL-means in term of both mean square error(MSE) and perceptual quality are compared with the proposed method, and structural similarity(SSIM) and quality index based on local variance(QILV) are given.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
文摘针对磁共振(magnetic resonance,MR)幅度图像中带有不易去除的与信号相关的莱斯(Rician)噪声问题,利用其复数图像中的实部与虚部所含噪声为不相关的加性高斯白噪声这一特性,代替对幅度图像直接去噪,提出将原始对偶字典学习(predual dictionary learning,PDL)算法用于对MR复数图像的实部与虚部分别进行去噪,然后组合得到幅度图像的方法.经仿真实验和在HT-MRSI50-50(50 mm)1.2 T小动物核磁共振系统中的实际应用,证明所提方法较直接对幅度图像去噪取得更好的效果,在有效去除MR图像噪声的同时能较好地保持图像中的细节.与经典的字典学习算法核奇异值分解(kernel singular value decomposition,K-SVD)相比,PDL算法去噪效果优于K-SVD算法,而运算速度提高约5倍.与经典的基于非局部相似块的三维块匹配滤波(block-matching and 3D filtering,BM3D)算法相比,在噪声水平较低时PDL算法略优于BM3D算法,噪声水平较高时BM3D算法略优于PDL算法,两者总体比较接近.
基金the National Natural Science Foundation of China(Nos.6136200161365013 and 51165033)+3 种基金the Natural Science Foundation of Jiangxi Province(Nos.20132BAB211030 and 20122BAB211015)the Technology Foundation of Department of Education in Jiangxi Province(Nos.GJJ 13061 and GJJ14196)the National Postdoctoral Research Funds(No.2014M551867)the Jiangxi Advanced Projects for Postdoctoral Research Funds(No.2014KY02)
文摘In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p < 1, and it penalizes small coefficients over a wider range meanwhile applies less bias to the larger coefficients.In this work, on the basis of two-level Bregman method with dictionary updating(TBMDU), we use the modified thresholding to minimize the non-convex function and propose the generalized TBMDU(GTBMDU) algorithm.The experimental results on magnetic resonance(MR) image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed algorithm can efficiently reconstruct the MR images and present advantages over the previous soft thresholding approaches.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
基金The National Natural Science Foundation of China(No.60702069)the Research Project of Department of Education of Zhe-jiang Province (No.20060601)+1 种基金the Natural Science Foundation of Zhe-jiang Province (No.Y1080851)Shanghai International Cooperation onRegion of France (No.06SR07109)
文摘In order to decrease the sensitivity of the constant scale parameter, adaptively optimize the scale parameter in the iteration regularization model (IRM) and attain a desirable level of applicability for image denoising, a novel IRM with the adaptive scale parameter is proposed. First, the classic regularization item is modified and the equation of the adaptive scale parameter is deduced. Then, the initial value of the varying scale parameter is obtained by the trend of the number of iterations and the scale parameter sequence vectors. Finally, the novel iterative regularization method is used for image denoising. Numerical experiments show that compared with the IRM with the constant scale parameter, the proposed method with the varying scale parameter can not only reduce the number of iterations when the scale parameter becomes smaller, but also efficiently remove noise when the scale parameter becomes bigger and well preserve the details of images.
基金the National Natural Science Foundation of China(Nos.61362001,61503176,61661031)Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘Recently, exploiting low rank property of the data accomplished by the non-convex optimization has shown great potential to decrease measurements for compressed sensing. In this paper, the low rank regularization is adopted to gradient similarity minimization, and applied for highly undersampled magnetic resonance imaging(MRI) reconstruction, termed gradient-based low rank MRI reconstruction(GLRMRI). In the proposed method,by incorporating the spatially adaptive iterative singular-value thresholding(SAIST) to optimize our gradient scheme, the deterministic annealing iterates the procedure efficiently and superior reconstruction performance is achieved. Extensive experimental results have consistently demonstrated that GLRMRI recovers both realvalued MR images and complex-valued MR data accurately, especially in the edge preserving perspective, and outperforms the current state-of-the-art approaches in terms of higher peak signal to noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.
基金National Natural Science Foundations of China(Nos.61362001,61365013,51165033)the Science and Technology Department of Jiangxi Province of China(Nos.20132BAB211030,20122BAB211015)+1 种基金the Jiangxi Advanced Projects for Postdoctoral Research Funds,China(o.2014KY02)the Innovation Special Fund Project of Nanchang University,China(o.cx2015136)
文摘In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金the Postgraduate Innovation Ability Cultivating Foundation of China(No.Z-SY-009)
文摘Image denoising is a classical problem in image processing. Its essential goal is to preserve the image features and to reduce noise effiectively. The nonlocal means(NL-means) filter is a successful approach proposed in recent years due to its patch similarity comparison. However, the accuracy of similarities in this algorithm degrades when it suffiers from heavy noise. In this paper, we introduce feature similarities based on a multichannel filter into NL-means filter. The multi-bank based feature vectors of each pixel in the image are computed by convolving from various orientations and scales to Leung-Malik set(edge, bar and spot filters), and then the similarities based on this information are computed instead of pixel intensity. Experiments are carried out with Rician noise. The results demonstrate the superior performance of the proposed method. The wavelet-based method and traditional NL-means in term of both mean square error(MSE) and perceptual quality are compared with the proposed method, and structural similarity(SSIM) and quality index based on local variance(QILV) are given.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.