为了提高瓦斯抽采效果,防治煤与瓦斯突出,探讨了煤孔隙内表面的结构特点,从表面自由能的角度揭示了煤-瓦斯之间的界面作用,构建了煤的表面自由能与瓦斯吸附量之间的表达式;利用OCG方法,测定沙曲煤矿煤样的表面自由能在实验室条件下为43....为了提高瓦斯抽采效果,防治煤与瓦斯突出,探讨了煤孔隙内表面的结构特点,从表面自由能的角度揭示了煤-瓦斯之间的界面作用,构建了煤的表面自由能与瓦斯吸附量之间的表达式;利用OCG方法,测定沙曲煤矿煤样的表面自由能在实验室条件下为43.33 m J/m^(2);利用瓦斯抽采流-固-热耦合控制方程,对沙曲煤矿的瓦斯抽采过程进行了数值模拟。研究表明:煤的孔隙内表面处于不均匀的力场之中,煤孔隙内表面相比煤体相内部具有附加的表面自由能,煤孔隙内表面的表面自由能愈大,其吸附能力愈强;煤的表面自由能随瓦斯抽采作业不断增加,且在抽采钻孔附近区域的表面自由能最高;在瓦斯抽采作业之前,通过有效的技术措施降低煤的表面自由能,有利于提高瓦斯抽采效果。展开更多
文摘为了提高瓦斯抽采效果,防治煤与瓦斯突出,探讨了煤孔隙内表面的结构特点,从表面自由能的角度揭示了煤-瓦斯之间的界面作用,构建了煤的表面自由能与瓦斯吸附量之间的表达式;利用OCG方法,测定沙曲煤矿煤样的表面自由能在实验室条件下为43.33 m J/m^(2);利用瓦斯抽采流-固-热耦合控制方程,对沙曲煤矿的瓦斯抽采过程进行了数值模拟。研究表明:煤的孔隙内表面处于不均匀的力场之中,煤孔隙内表面相比煤体相内部具有附加的表面自由能,煤孔隙内表面的表面自由能愈大,其吸附能力愈强;煤的表面自由能随瓦斯抽采作业不断增加,且在抽采钻孔附近区域的表面自由能最高;在瓦斯抽采作业之前,通过有效的技术措施降低煤的表面自由能,有利于提高瓦斯抽采效果。