We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We o...We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We observed a development of quantized plateaus in Hall resistance (Rxy) at high pulsed fields up to 60 T. Due to the strong 2D confine- ment and layered properties of the samples, we interpreted the observation as bulk quantum Hall effect that is contributed by the parallel 2D conduction channels. Moreover, the spin degeneracy was lifted leading to Landau level splitting. The presence of anisotropic g factor and the formation of the oscillation beating pattern reveal a strong spin-orbit interaction in the SrMnSb2 system.展开更多
Recently, modifications of charge density wave(CDW) in two-dimensional(2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides(TMDCs). Optical, electrical transport ...Recently, modifications of charge density wave(CDW) in two-dimensional(2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides(TMDCs). Optical, electrical transport measurements and scanning tunneling microscopy uncover the enormous difference on the many-body states when the thickness is reduced down to monolayer. However, the CDW in quasi-one-dimensional(1D) materials like transition metal trichalcogenides(TMTCs) is yet to be explored in low dimension whose mechanism is likely distinct from their quasi-2D counterparts.Here, we report a systematic study on the CDW properties of titanium trisulfide(TiS3). Two phase transition temperatures were observed to decrease from 53 K(103 K) to 46 K(85 K) for the bulk and 〈 15-nm thick nanoribbon, respectively,which arises from the increased fluctuation effect across the chain in the nanoribbon structure, thereby destroying the CDW coherence. It also suggests a strong anisotropy of CDW states in quasi-1D TMTCs which is different from that in TMDCs.Remarkably, by using back gate of-30 V ~ 70 V in 15-nm device, we can tune the second transition temperature from110 K(at-30 V) to 93 K(at 70 V) owing to the altered electron concentration. Finally, the optical approach through the impinging of laser beams on the sample surface is exploited to manipulate the CDW transition, where the melting of the CDW states shows a strong dependence on the excitation energy. Our results demonstrate TiS3 as a promising quasi-1D CDW material and open up a new window for the study of collective phases in TMTCs.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303302)the National Natural Science Foundation of China(Grant Nos.61322407,11474058,and 61674040)
文摘We have carried out magneto-transport measurements for single crystal SrMnSb2. Clear Shubnikov-de Haas oscil- lations were resolved at relatively low magnetic field around 4 T, revealing a quasi-2D Fermi surface. We observed a development of quantized plateaus in Hall resistance (Rxy) at high pulsed fields up to 60 T. Due to the strong 2D confine- ment and layered properties of the samples, we interpreted the observation as bulk quantum Hall effect that is contributed by the parallel 2D conduction channels. Moreover, the spin degeneracy was lifted leading to Landau level splitting. The presence of anisotropic g factor and the formation of the oscillation beating pattern reveal a strong spin-orbit interaction in the SrMnSb2 system.
基金Project supported by the National Young 1000-Talent Planthe National Natural Science Foundation of China(Grant Nos.61322407,11474058,and61674040)
文摘Recently, modifications of charge density wave(CDW) in two-dimensional(2D) show intriguing properties in quasi-2D materials such as layered transition metal dichalcogenides(TMDCs). Optical, electrical transport measurements and scanning tunneling microscopy uncover the enormous difference on the many-body states when the thickness is reduced down to monolayer. However, the CDW in quasi-one-dimensional(1D) materials like transition metal trichalcogenides(TMTCs) is yet to be explored in low dimension whose mechanism is likely distinct from their quasi-2D counterparts.Here, we report a systematic study on the CDW properties of titanium trisulfide(TiS3). Two phase transition temperatures were observed to decrease from 53 K(103 K) to 46 K(85 K) for the bulk and 〈 15-nm thick nanoribbon, respectively,which arises from the increased fluctuation effect across the chain in the nanoribbon structure, thereby destroying the CDW coherence. It also suggests a strong anisotropy of CDW states in quasi-1D TMTCs which is different from that in TMDCs.Remarkably, by using back gate of-30 V ~ 70 V in 15-nm device, we can tune the second transition temperature from110 K(at-30 V) to 93 K(at 70 V) owing to the altered electron concentration. Finally, the optical approach through the impinging of laser beams on the sample surface is exploited to manipulate the CDW transition, where the melting of the CDW states shows a strong dependence on the excitation energy. Our results demonstrate TiS3 as a promising quasi-1D CDW material and open up a new window for the study of collective phases in TMTCs.