期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于损失提取反馈注意网络的图像超分辨率重建研究 被引量:2
1
作者 孙红 张玉香 《系统仿真学报》 CAS CSCD 北大核心 2023年第2期308-317,共10页
自SRCNN(super-resolution convolutional neural network)将卷积神经网络用于超分辨率图像重建领域以来,人们通过大量的研究证明了使用深度学习的方法能够提高重建图像的效果。针对图像超分辨率网络中参数过多以及图像特征利用不充分... 自SRCNN(super-resolution convolutional neural network)将卷积神经网络用于超分辨率图像重建领域以来,人们通过大量的研究证明了使用深度学习的方法能够提高重建图像的效果。针对图像超分辨率网络中参数过多以及图像特征利用不充分导致可用的高频信息较少等问题,提出了一种基于损失提取策略的反馈注意网络(loss extraction feedback attention network,LEFAN),以循环的方式对参数进行复用,同时增加对低分辨率图像特征的重用,以捕获更多的高频信息,对重建过程中造成的损失进行提取并融合到最终的超分辨率图像中。实验结果表明:算法在实现多次利用低分辨率图像的基础上,对潜在的损失进行提取并融合到最终的超分辨率图像中,可以获得较好的图像重建效果。 展开更多
关键词 反馈机制 注意力机制 损失提取 超分辨率图像重建
下载PDF
融合MKF的Pointnet++优化算法研究 被引量:4
2
作者 孙红 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1269-1273,共5页
移动机器人能够在陌生环境中实现全局定位是目前很多研究的重点和热点问题之一.移动机器人在陌生环境中会受到环境结构变化、障碍物等多种复杂因素的影响,为了使移动机器人能够在陌生环境中实现全局定位需要以机器人能够对环境中的障碍... 移动机器人能够在陌生环境中实现全局定位是目前很多研究的重点和热点问题之一.移动机器人在陌生环境中会受到环境结构变化、障碍物等多种复杂因素的影响,为了使移动机器人能够在陌生环境中实现全局定位需要以机器人能够对环境中的障碍物体进行识别分类以及对环境进行局部分割为基础.为此,本文采用了Pointnet、Pointnet++以及融合了MKF的Pointnet++优化算法等方法,并采用基于深度学习的方法处理点云数据,实现障碍物体的识别分类和环境的局部分割.实验结果表明,基于MKF的Pointnet++优化算法在物体识别分类和环境分割应用上比Pointnet和Pointnet++效果更好,并且在点云低密度的环境下仍有良好的效果. 展开更多
关键词 全局定位 点云 Pointnet 环境分割
下载PDF
融合边界监督策略的改进特征金字塔算法研究
3
作者 孙红 张玉香 《系统仿真学报》 CAS CSCD 北大核心 2022年第10期2119-2129,共11页
针对语义分割中存在的边界划分不够准确及存在多尺度目标等问题,提出了一种融合边界监督策略的改进特征金字塔算法。通过融合的边界监督策略和改进的特征金字塔算法分别解决边界划分不准确和存在多尺度目标的问题,并且在上采样过程中加... 针对语义分割中存在的边界划分不够准确及存在多尺度目标等问题,提出了一种融合边界监督策略的改进特征金字塔算法。通过融合的边界监督策略和改进的特征金字塔算法分别解决边界划分不准确和存在多尺度目标的问题,并且在上采样过程中加入注意力机制,进一步提升分割效果。实验结果表明:该算法分别在Camvid和PASCAL VOC2012两个数据集上取得了58.69%和78.59%的平均交并比(mean intersection over union,MIOU)指标,在分割效果上有较好的表现。 展开更多
关键词 图像语义分割 边界监督 特征金字塔 注意力上采样
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部