Smart textiles responding to the ambient environment like temperature,humidity,and light are highly desirable to improve the comfortability and realize multifunctions.The bamboo yarn has merits like air permeability,b...Smart textiles responding to the ambient environment like temperature,humidity,and light are highly desirable to improve the comfortability and realize multifunctions.The bamboo yarn has merits like air permeability,biodegradability,and excellent heat dissipation performance,but it has not been prepared for responsive materials and smart textiles.In this paper,the moisture-responsive twisted bamboo yarns were plied to form a self-balanced torsional actuator and wrapped around a mandrel to form a coil,followed by water immersion and evaporation to fix the shape and serve as a tensile actuator.A torsional actuation of 64.4°·mm^-1 was realized for the twisted actuator in 4.2 s;a maximum elongation of 133%or contraction of 50%was achieved for a coiled tensile actuator with good cyclability.The porous structure of bamboo yarns helped improve the water absorbance speed and decrease the response time of moisture.The self-balanced two-ply physical structure and reversible generation of chemical phase after soaking in aqueous solution fixed internal stress and provided good cyclability.With the unique properties including aqueous water-induced shape fixation and moisture-induced actuation,the application of tensile actuation of bamboo yarns was demonstrated,showing promising prospects on smart textiles.展开更多
Developing moisture-sensitive artificial muscles from industrialized natural fibers with large abundance is highly desired for smart textiles that can respond to humidity or temperature change.However,currently most o...Developing moisture-sensitive artificial muscles from industrialized natural fibers with large abundance is highly desired for smart textiles that can respond to humidity or temperature change.However,currently most of fiber artificial muscles are based on non-common industrial textile materials or of a small portion of global textile fiber market.In this paper,we developed moisture-sensitive torsional artificial muscles and textiles based on cotton yarns.It was prepared by twisting the cotton yarn followed by folding in the middle point to form a self-balanced structure.The cotton yarn muscle showed a torsional stroke of 42.55°/mm and a rotational speed of 720 rpm upon exposure to water moisture.Good reversibility and retention of stroke during cyclic exposure and removal of water moisture were obtained.A moisturesensitive smart window that can close when it rains was demonstrated based on the torsional cotton yarn muscles.This twist-based technique combining natural textile fibers provides a new insight for construction of smart textile materials.展开更多
基金Project supported by the State Key Development Program for Basic Research of China(Grant Nos.2016YFA0200200 and 2017YFB0307001)the National Natural Science Foundation of China(Grant Nos.51973093,U1533122,and 51773094)the Natural Science Foundation of Tianjin,China(Grant No.18JCZDJC36800).
文摘Smart textiles responding to the ambient environment like temperature,humidity,and light are highly desirable to improve the comfortability and realize multifunctions.The bamboo yarn has merits like air permeability,biodegradability,and excellent heat dissipation performance,but it has not been prepared for responsive materials and smart textiles.In this paper,the moisture-responsive twisted bamboo yarns were plied to form a self-balanced torsional actuator and wrapped around a mandrel to form a coil,followed by water immersion and evaporation to fix the shape and serve as a tensile actuator.A torsional actuation of 64.4°·mm^-1 was realized for the twisted actuator in 4.2 s;a maximum elongation of 133%or contraction of 50%was achieved for a coiled tensile actuator with good cyclability.The porous structure of bamboo yarns helped improve the water absorbance speed and decrease the response time of moisture.The self-balanced two-ply physical structure and reversible generation of chemical phase after soaking in aqueous solution fixed internal stress and provided good cyclability.With the unique properties including aqueous water-induced shape fixation and moisture-induced actuation,the application of tensile actuation of bamboo yarns was demonstrated,showing promising prospects on smart textiles.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0307001)the National Natural Science Foundation of China(Grant Nos.U1533122 and 51773094)+4 种基金the Natural Science Foundation of Tianjin,China(Grant No.18JCZDJC36800)the Science Foundation for Distinguished Young Scholars of Tianjin,China(Grant No.18JCJQJC46600)the Fundamental Research Funds for the Central Universities,China(Grant No.63171219)Key Laboratory for Medical Data Analysis and Statistical Research of TianjinState Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(Grant No.LK1704)。
文摘Developing moisture-sensitive artificial muscles from industrialized natural fibers with large abundance is highly desired for smart textiles that can respond to humidity or temperature change.However,currently most of fiber artificial muscles are based on non-common industrial textile materials or of a small portion of global textile fiber market.In this paper,we developed moisture-sensitive torsional artificial muscles and textiles based on cotton yarns.It was prepared by twisting the cotton yarn followed by folding in the middle point to form a self-balanced structure.The cotton yarn muscle showed a torsional stroke of 42.55°/mm and a rotational speed of 720 rpm upon exposure to water moisture.Good reversibility and retention of stroke during cyclic exposure and removal of water moisture were obtained.A moisturesensitive smart window that can close when it rains was demonstrated based on the torsional cotton yarn muscles.This twist-based technique combining natural textile fibers provides a new insight for construction of smart textile materials.