为了对所收集的未标记数据进行划分归类,用已知数据生成预测模型成为一种热门方法。针对模型会隐式地记住训练数据集而导致数据隐私泄露的问题,为保护训练集的隐私安全,将差分隐私应用于多类别图像数据集分类任务中,提出差分隐私与深度...为了对所收集的未标记数据进行划分归类,用已知数据生成预测模型成为一种热门方法。针对模型会隐式地记住训练数据集而导致数据隐私泄露的问题,为保护训练集的隐私安全,将差分隐私应用于多类别图像数据集分类任务中,提出差分隐私与深度残差网络(differential privacy with deep residual networks,Diff-RN)方法。该方法将多类别图像数据分成多个互斥的数据集,通过黑盒的方式对互斥数据集分别进行非公开的教师模型训练,并使用拉普拉斯机制对教师模型结果聚合注入噪声与非敏感公共数据集结合,利用深度残差网络训练公开的学生模型,实验结果表明,在数据集cifar-100上,Diff-RN方法训练得到的模型分类精确度提高,训练过程中数据损失量降低,隐私保护程度更高,并且整个训练过程满足ε-差分隐私。展开更多
文摘为了对所收集的未标记数据进行划分归类,用已知数据生成预测模型成为一种热门方法。针对模型会隐式地记住训练数据集而导致数据隐私泄露的问题,为保护训练集的隐私安全,将差分隐私应用于多类别图像数据集分类任务中,提出差分隐私与深度残差网络(differential privacy with deep residual networks,Diff-RN)方法。该方法将多类别图像数据分成多个互斥的数据集,通过黑盒的方式对互斥数据集分别进行非公开的教师模型训练,并使用拉普拉斯机制对教师模型结果聚合注入噪声与非敏感公共数据集结合,利用深度残差网络训练公开的学生模型,实验结果表明,在数据集cifar-100上,Diff-RN方法训练得到的模型分类精确度提高,训练过程中数据损失量降低,隐私保护程度更高,并且整个训练过程满足ε-差分隐私。