期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多类别图像数据分类隐私保护算法 被引量:4
1
作者 郑剑 碧玉 《科学技术与工程》 北大核心 2020年第29期12007-12013,共7页
为了对所收集的未标记数据进行划分归类,用已知数据生成预测模型成为一种热门方法。针对模型会隐式地记住训练数据集而导致数据隐私泄露的问题,为保护训练集的隐私安全,将差分隐私应用于多类别图像数据集分类任务中,提出差分隐私与深度... 为了对所收集的未标记数据进行划分归类,用已知数据生成预测模型成为一种热门方法。针对模型会隐式地记住训练数据集而导致数据隐私泄露的问题,为保护训练集的隐私安全,将差分隐私应用于多类别图像数据集分类任务中,提出差分隐私与深度残差网络(differential privacy with deep residual networks,Diff-RN)方法。该方法将多类别图像数据分成多个互斥的数据集,通过黑盒的方式对互斥数据集分别进行非公开的教师模型训练,并使用拉普拉斯机制对教师模型结果聚合注入噪声与非敏感公共数据集结合,利用深度残差网络训练公开的学生模型,实验结果表明,在数据集cifar-100上,Diff-RN方法训练得到的模型分类精确度提高,训练过程中数据损失量降低,隐私保护程度更高,并且整个训练过程满足ε-差分隐私。 展开更多
关键词 机器学习 黑盒的方式 拉普拉斯机制 深度残差网络 差分隐私
下载PDF
K-means‖隐私保护聚类算法 被引量:2
2
作者 郑剑 碧玉 《计算机工程与设计》 北大核心 2022年第1期26-33,共8页
针对异常离群点对k-means‖算法的聚类精确度影响较大且在确定中心点过程中会泄露聚类数据隐私的问题,提出DPk-means‖算法。标记离群点,降低离群点对k-means‖算法聚类精确度的影响,将差分隐私应用于k-means‖聚类算法中保护聚类数据... 针对异常离群点对k-means‖算法的聚类精确度影响较大且在确定中心点过程中会泄露聚类数据隐私的问题,提出DPk-means‖算法。标记离群点,降低离群点对k-means‖算法聚类精确度的影响,将差分隐私应用于k-means‖聚类算法中保护聚类数据隐私。在选择聚类初始中心点和迭代求取均值中心点的过程中,应用拉普拉斯机制注入噪声,解决数据隐私泄露的问题。通过隐私预算动态变化对聚类结果准确性的影响及同类算法对比实验分析验证,DPk-means‖算法能够提供更高的隐私保护水平且保证聚类结果的准确性。 展开更多
关键词 聚类精确度 并行化k均值 离群点 拉普拉斯机制 差分隐私
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部