We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the pe...We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the performances of p-type (copper phthalocyanine) and n-type (fluorinated copper phthaloeyanine) OFETs with optimized thickness of p-4p thin films are greatly enhanced. Both the field-effect mobility and the on/off ratio of the two-type devices are improved by one order of magnitude compared to those of the control devices. This re- markable improvement is attributed to the introduction of p-4p, which can form a highly oriented and continuous phthalocyanine derivative film with the molecular π - π stack direction parallel to the substrate.展开更多
We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultane- ous...We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultane- ously applying V205 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V205 layer was added between CuPc and A1 in the source-drain (S/D) area. As a result, the field- effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V.s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V205 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 60676051, the Natural Science Foundation of Tianjin under Grant No 07JCYBJC12700, the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin, and the Key Program for Science and Technology in Tianjin under Grant No 14ZCZDGX00600.
文摘We investigate the phthalocyanine derivative organic field-effect transistors (OFETs) using a novel para - quaterphenyl (p-4p) as the inducing layer. Compared to the devices without the p-4p inducing layer, the performances of p-type (copper phthalocyanine) and n-type (fluorinated copper phthaloeyanine) OFETs with optimized thickness of p-4p thin films are greatly enhanced. Both the field-effect mobility and the on/off ratio of the two-type devices are improved by one order of magnitude compared to those of the control devices. This re- markable improvement is attributed to the introduction of p-4p, which can form a highly oriented and continuous phthalocyanine derivative film with the molecular π - π stack direction parallel to the substrate.
基金Project supported by the National Natural Science Foundation of China(No.60676051)the National High Technology Research and Development Program of China(No.2013A A014201)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission(No.2011ZD02)the Key Science and Technology Support Program of Tianjin(No.14ZCZDGX00006)the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin
文摘We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultane- ously applying V205 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V205 layer was added between CuPc and A1 in the source-drain (S/D) area. As a result, the field- effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V.s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V205 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced.