为了解马来西亚红罗非鱼体色分化变异的遗传分子机制,以期解决其越冬期的体色变异问题,本研究比较了越冬期不同温度处理(16、20、25和30°C)对其表观体色、酪氨酸酶活性以及皮肤色素带和黑色素细胞的影响。实验50 d后发现,16°...为了解马来西亚红罗非鱼体色分化变异的遗传分子机制,以期解决其越冬期的体色变异问题,本研究比较了越冬期不同温度处理(16、20、25和30°C)对其表观体色、酪氨酸酶活性以及皮肤色素带和黑色素细胞的影响。实验50 d后发现,16°C组大部分鱼体较实验开始时变黑,整个鱼体呈现青灰色,20°C组多数鱼体腹部也变为青灰色。随着温度的升高,红罗非鱼背部皮肤、腹部皮肤和血清中酪氨酸酶的活性逐渐升高,25°C时达到最高值,而随着温度的继续升高,30°C组鱼的酪氨酸酶活性反而降低。血液中tyr m RNA的表达量随着温度的升高而升高,25和30°C组红罗非鱼肌肉中的tyr m RNA表达量也显著高于16和20°C组。切片显微结构发现,随着温度的升高,红罗非鱼背部皮肤的黑色素细胞数量减少。研究表明,马来西亚红罗非鱼越冬期的体色变异可能是其皮肤黑色素细胞数量和体内酪氨酸酶活性改变的结果,深入研究其调控机制有助于了解鱼类体色遗传机理并进行体色性状的改良。展开更多
为了进一步观察最佳线性无偏预测(best linear unbiased prediction,BLUP)家系选育方法在福瑞鲤(Cyprinus carpio)继代选育中的潜力,该研究测量了继续选育第2代家系群体不同养殖阶段的体质量和形态性状。结果表明,生长快速家系群福瑞鲤...为了进一步观察最佳线性无偏预测(best linear unbiased prediction,BLUP)家系选育方法在福瑞鲤(Cyprinus carpio)继代选育中的潜力,该研究测量了继续选育第2代家系群体不同养殖阶段的体质量和形态性状。结果表明,生长快速家系群福瑞鲤早期(4月龄)生长速度较慢,到后期则生长加快,其体质量增长表现出明显的优势。在体型方面,随着养殖时间的延长,福瑞鲤各选育家系群的体厚/体长增加,体高/体长降低,逐渐呈现其体型修长的特征;同时2个越冬期的成活率均达到了94%以上。结果表明通过BLUP家系选育对福瑞鲤长期选育是可行的。在此基础上,通过主成分分析发现,福瑞鲤生长性状第一主成分是体质量;对不同生长时期的体质量进行相关性分析,发现9月龄、14月龄、21月龄鱼的体质量与24月龄的相关系数均达到极显著水平(P<0.01),分别为0.851、0.897和0.957。因此,在福瑞鲤继续选育过程中,进行早期个体选择值得尝试。展开更多
文摘为了解马来西亚红罗非鱼体色分化变异的遗传分子机制,以期解决其越冬期的体色变异问题,本研究比较了越冬期不同温度处理(16、20、25和30°C)对其表观体色、酪氨酸酶活性以及皮肤色素带和黑色素细胞的影响。实验50 d后发现,16°C组大部分鱼体较实验开始时变黑,整个鱼体呈现青灰色,20°C组多数鱼体腹部也变为青灰色。随着温度的升高,红罗非鱼背部皮肤、腹部皮肤和血清中酪氨酸酶的活性逐渐升高,25°C时达到最高值,而随着温度的继续升高,30°C组鱼的酪氨酸酶活性反而降低。血液中tyr m RNA的表达量随着温度的升高而升高,25和30°C组红罗非鱼肌肉中的tyr m RNA表达量也显著高于16和20°C组。切片显微结构发现,随着温度的升高,红罗非鱼背部皮肤的黑色素细胞数量减少。研究表明,马来西亚红罗非鱼越冬期的体色变异可能是其皮肤黑色素细胞数量和体内酪氨酸酶活性改变的结果,深入研究其调控机制有助于了解鱼类体色遗传机理并进行体色性状的改良。
文摘为了进一步观察最佳线性无偏预测(best linear unbiased prediction,BLUP)家系选育方法在福瑞鲤(Cyprinus carpio)继代选育中的潜力,该研究测量了继续选育第2代家系群体不同养殖阶段的体质量和形态性状。结果表明,生长快速家系群福瑞鲤早期(4月龄)生长速度较慢,到后期则生长加快,其体质量增长表现出明显的优势。在体型方面,随着养殖时间的延长,福瑞鲤各选育家系群的体厚/体长增加,体高/体长降低,逐渐呈现其体型修长的特征;同时2个越冬期的成活率均达到了94%以上。结果表明通过BLUP家系选育对福瑞鲤长期选育是可行的。在此基础上,通过主成分分析发现,福瑞鲤生长性状第一主成分是体质量;对不同生长时期的体质量进行相关性分析,发现9月龄、14月龄、21月龄鱼的体质量与24月龄的相关系数均达到极显著水平(P<0.01),分别为0.851、0.897和0.957。因此,在福瑞鲤继续选育过程中,进行早期个体选择值得尝试。