期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于特征集聚和卷积神经网络的恶意PDF文档检测方法 被引量:3
1
作者 王金双 邹霞 《信息技术与网络安全》 2021年第8期35-41,共7页
针对现有恶意PDF文档检测方法存在特征维度高、数据集样本少导致模型欠拟合等问题,提出了一种基于特征集聚和卷积神经网络的恶意PDF文档检测方法。该方法以词袋模型为基础,从PDF文档中提取常规特征和结构特征。然后以合并后特征簇最小... 针对现有恶意PDF文档检测方法存在特征维度高、数据集样本少导致模型欠拟合等问题,提出了一种基于特征集聚和卷积神经网络的恶意PDF文档检测方法。该方法以词袋模型为基础,从PDF文档中提取常规特征和结构特征。然后以合并后特征簇最小方差为目标,使用Ward最小方差聚类方法实现特征集聚。最后,将聚合特征送入卷积神经网络分类模型进行训练。根据不同聚合特征数下模型性能的好坏,确定最优的聚合特征数。实验结果表明,该方法降低了特征维度,提升了模型的召回率,缓解了模型的欠拟合问题。纵向比较来看,在不同的良性样本和恶意样本比例下,遍历得到最优的聚合特征数,召回率平均提升了53%,F-score平均提升了0.44,运行时间平均缩短了27%;与PJScan、PDFrate、Luxor 3种检测工具横向相比,检测的综合性能平均提升了5%。 展开更多
关键词 恶意PDF文档 特征集聚 静态检测 卷积神经网络
下载PDF
基于文档图结构的恶意PDF文档检测方法 被引量:1
2
作者 王金双 邹霞 《信息技术与网络安全》 2021年第11期16-23,共8页
目前基于机器学习的恶意PDF文档检测方法依赖于专家经验来遴选特征,无法全面反映文档属性。而且在面对对抗样本时,检测器性能下降明显。针对上述问题,提出了一种基于文档图结构和卷积神经网络的恶意PDF文档检测方法。该方法解析文档结构... 目前基于机器学习的恶意PDF文档检测方法依赖于专家经验来遴选特征,无法全面反映文档属性。而且在面对对抗样本时,检测器性能下降明显。针对上述问题,提出了一种基于文档图结构和卷积神经网络的恶意PDF文档检测方法。该方法解析文档结构,根据文档中各对象之间的引用关系构建出有向图。然后,通过TF-IDF算法计算各节点对分类的贡献度来进行图结构精简。最后,计算精简后图的邻接矩阵和度矩阵,并得到图的拉普拉斯矩阵,以此作为特征送入CNN分类模型进行训练。同时还加入了对抗样本,对模型进行对抗训练。实验评估表明,在给定训练和测试样本比例9:1条件下,不断调整神经网络结构和参数,该方法的准确率达到了99.71%,性能优于KNN和SVM分类模型。在针对对抗样本的检测上,与知名在线检测网站VirusTotal上的67款杀毒引擎相比,该方法取得了更高的检测性能。 展开更多
关键词 恶意PDF文档 文档图结构 卷积神经网络 对抗样本
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部