期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进堆叠降噪自编码的滚动轴承故障分类
被引量:
63
1
作者
侯文
擎
叶鸣
李巍华
《机械工程学报》
EI
CAS
CSCD
北大核心
2018年第7期87-96,共10页
作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表...
作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表示,易于进行故障分类。然而针对具体的故障诊断问题,网络隐含层节点数、稀疏参数以及输入数据置零比例将直接影响诊断的结果。因此,提出一种改进的SDAE诊断方法,利用粒子群算法(Particle swarm optimization,PSO)对DAE网络超参数进行自适应的选取来确定SDAE网络结构,据此得到故障状态的特征表示,输入到Soft-max分类器中进行故障分类识别。通过变转速工况下的滚动轴承故障仿真和模拟试验对算法进行验证,试验结果表明,基于PSO-SDAE网络的诊断方法在泛化性、故障识别率方面均优于支持向量机(Support vector machine,SVM)、反向传播神经网络(Back propagation,BP)以及深度置信网络(Deep belief network,DBN)。
展开更多
关键词
降噪自编码
深度神经网络
超参数优化
故障诊断
原文传递
题名
基于改进堆叠降噪自编码的滚动轴承故障分类
被引量:
63
1
作者
侯文
擎
叶鸣
李巍华
机构
华南理工大学机械与汽车工程学院
华南理工大学广东省汽车检测工程技术研究中心
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2018年第7期87-96,共10页
基金
国家自然科学基金(51475170)
中央高校基本科研业务费专项资金资助项目
文摘
作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表示,易于进行故障分类。然而针对具体的故障诊断问题,网络隐含层节点数、稀疏参数以及输入数据置零比例将直接影响诊断的结果。因此,提出一种改进的SDAE诊断方法,利用粒子群算法(Particle swarm optimization,PSO)对DAE网络超参数进行自适应的选取来确定SDAE网络结构,据此得到故障状态的特征表示,输入到Soft-max分类器中进行故障分类识别。通过变转速工况下的滚动轴承故障仿真和模拟试验对算法进行验证,试验结果表明,基于PSO-SDAE网络的诊断方法在泛化性、故障识别率方面均优于支持向量机(Support vector machine,SVM)、反向传播神经网络(Back propagation,BP)以及深度置信网络(Deep belief network,DBN)。
关键词
降噪自编码
深度神经网络
超参数优化
故障诊断
Keywords
denoising auto-encoder
deep neural network
hyper-parameters optimization
fault classification
分类号
TH133.33 [机械工程—机械制造及自动化]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于改进堆叠降噪自编码的滚动轴承故障分类
侯文
擎
叶鸣
李巍华
《机械工程学报》
EI
CAS
CSCD
北大核心
2018
63
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部