期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进堆叠降噪自编码的滚动轴承故障分类 被引量:63
1
作者 侯文 叶鸣 李巍华 《机械工程学报》 EI CAS CSCD 北大核心 2018年第7期87-96,共10页
作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表... 作为一种新兴的机器学习方法,深度学习在故障诊断领域逐渐得到了应用。其中,堆叠降噪自编码(Stacked de-noising auto-encoders,SDAE)算法先对原始数据添加'损伤噪声',然后通过自编码网络进行数据重构,从而得到更鲁棒性的特征表示,易于进行故障分类。然而针对具体的故障诊断问题,网络隐含层节点数、稀疏参数以及输入数据置零比例将直接影响诊断的结果。因此,提出一种改进的SDAE诊断方法,利用粒子群算法(Particle swarm optimization,PSO)对DAE网络超参数进行自适应的选取来确定SDAE网络结构,据此得到故障状态的特征表示,输入到Soft-max分类器中进行故障分类识别。通过变转速工况下的滚动轴承故障仿真和模拟试验对算法进行验证,试验结果表明,基于PSO-SDAE网络的诊断方法在泛化性、故障识别率方面均优于支持向量机(Support vector machine,SVM)、反向传播神经网络(Back propagation,BP)以及深度置信网络(Deep belief network,DBN)。 展开更多
关键词 降噪自编码 深度神经网络 超参数优化 故障诊断
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部