为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Rati-o)和结构相似度(SSIM,Structure Sim ilarity)作为图像质量的描述参数,给出“野点”的定义,提出“野点预测”并基于神经网络(NN,Neural Network)与支持向量机(SV...为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Rati-o)和结构相似度(SSIM,Structure Sim ilarity)作为图像质量的描述参数,给出“野点”的定义,提出“野点预测”并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support VectorMa-chines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42%,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中“野点”的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量.展开更多
An image and video quality assessment method was developed using neural network and support vector machines (SVM) with the peak signal to noise ratio (PSNR) and the structure similarity indexes used to describe im...An image and video quality assessment method was developed using neural network and support vector machines (SVM) with the peak signal to noise ratio (PSNR) and the structure similarity indexes used to describe image quality. The neural network was used to obtain the mapping functions between the objective quality assessment indexes and subjective quality assessment. The SVM was used to classify the images into different types which were accessed using different mapping functions. Video quality was assessed based on the quality of each frame in the video sequence with various weights to describe motion and scene changes in the video. The number of isolated points in the correlations of the image and video subjective and objective quality assessments was reduced by this method. Simulation results show that the method accurately accesses image quality. The monotonicity of the method for images is 6.94% higher than with the PSNR method, and the root mean square error is at least 35.90% higher than with the PSNR.展开更多
文摘为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Rati-o)和结构相似度(SSIM,Structure Sim ilarity)作为图像质量的描述参数,给出“野点”的定义,提出“野点预测”并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support VectorMa-chines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42%,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中“野点”的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量.
文摘An image and video quality assessment method was developed using neural network and support vector machines (SVM) with the peak signal to noise ratio (PSNR) and the structure similarity indexes used to describe image quality. The neural network was used to obtain the mapping functions between the objective quality assessment indexes and subjective quality assessment. The SVM was used to classify the images into different types which were accessed using different mapping functions. Video quality was assessed based on the quality of each frame in the video sequence with various weights to describe motion and scene changes in the video. The number of isolated points in the correlations of the image and video subjective and objective quality assessments was reduced by this method. Simulation results show that the method accurately accesses image quality. The monotonicity of the method for images is 6.94% higher than with the PSNR method, and the root mean square error is at least 35.90% higher than with the PSNR.