A novel polyoxometalate {[Ag^I(4,4'-bipy)]3[PW12O40]}·(4,4'-bipy)·4H2O 1 has been synthesized hydrothermally and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crysta...A novel polyoxometalate {[Ag^I(4,4'-bipy)]3[PW12O40]}·(4,4'-bipy)·4H2O 1 has been synthesized hydrothermally and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal of 1 belongs to the triclinic system, space group P1 with a = 11.3710(17), b = 12.0701(16), c = 13.1061(12) A, α = 112.838(3), β = 94.545(6), γ = 99.526(4)°, V = 1614.4(4) A^3, Mr = 3825.40, Z = 1, Dc = 3.935, μ = 22.289mm^-1, F(000) = 1692, the final R = 0.0507 and wR = 0.1054. X-ray diffraction analysis reveals that the molecular structure of 1 consists of three coordinated cations [AgI(4,4'-bipy)]+, a polyanion unit [PW12O40]3-, and a discrete 4,4′-bipy molecule. Significantly, there exist two crystallographically independent silver(I) centers in 1 and all [AgI(4,4'-bipy)]^+ cations are linked with each other to form a one-dimensional Ag-4,4'-bipy polymer chain. The neighboring polymer chains are further interconnected to form a 3D framework by the covalent effect of silver atoms and terminal oxygen atoms of the polyanion. The electrochemical behaviors of 1 have also been studied in detail by cyclic voltammograms.展开更多
Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2)product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Hetero...Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Heteroatom modification is one of the most effective strategies for boosting catalytic performance,as it can regulate the physicochemical properties of host catalysts to improve their intrinsic activity.Herein,aiming to provide an overview of the impact of heteroatoms on catalytic activity at the atomic level,we present a review of the key role of heteroatoms in enhancing reaction kinetics based on the reaction pathways of the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline media.In particular,the introduction of heteroatoms can directly and indirectly optimize the interactions between the active sites and intermediates,thus improving the intrinsic activity.To clearly illustrate this influence in detail,we have summarized a series of representative heteroatom-modified electrocatalysts and discussed the important roles of heteroatoms in the OER and HER reaction pathways.Finally,some challenges and perspectives for heteroatom-modified electrodes are discussed.We hope that this review will be helpful for the development of efficient and low-cost electrocatalysts for water electrolysis and other energy conversion applications.展开更多
TiO2 nanoparticles were prepared using the hydrothermal method and modified with CgN to syn-thesize a Type-Ⅱheterojunction semiconductor photocatalyst,TiO2-C;Na.In addition,a carbon layerwas coated onto the TiO2 nano...TiO2 nanoparticles were prepared using the hydrothermal method and modified with CgN to syn-thesize a Type-Ⅱheterojunction semiconductor photocatalyst,TiO2-C;Na.In addition,a carbon layerwas coated onto the TiO2 nanoparticles and the obtained material was uniformly covered on thesurface of CaNa to form an all-solid-state Z-scheme semiconductor photocatalyst,TiO2-C-C3N4,Through characterization by XRD,XPS,SEM,TEM,BET,photoelectrochemical experiments,UV-visible diffuse reflection,and PL spectroscopy,the charge transfer mechanism and band gappositions for the composite photocatalysts were analyzed.The Type-Ⅱand all-solid-state Z-schemeheterojunction structures were compared.By combining microscopic internal mechanisms withmacroscopic experimental phenomena,the relationship between performance and structure wasverified.Experimental methods were used to explore the adaptation degree of different photocata-lytic mechanisms using the same degradation system.This study highlights effective photocatalystdesign to meet the requirements for specific degradation conditions.展开更多
Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximati...Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximation(LSDA)+U method on typical divalent metal oxide semiconductors CuO,NiO,Ni‐doped CuO,and Cu‐doped NiO.It is found that the influence of Ni doping on the spatial structure of CuO and that of Cu doping on the spatial structure of NiO are negligible because of the similar radii of Ni2+and Cu2+.The valence band and conduction band for Ni‐doped CuO are clearly spin‐split,corresponding to a net effective magnetic moment ofμeff=1.66μB.This may improve the photocatalytic efficiency and raise the recycle rate of photocatalysts.In the Cu‐doped NiO system,the presence of Cu3d states near to the Fermi level increases the width of the valence band and narrows the band gap with respect to that in pure NiO.Beyond the Cu3d states,within the band gap,appear two energy levels around the Fermi level,which may effectively separate the electron‐hole pair and also lead to enhanced absorption of visible light and infrared light.It can be concluded that the observed changes in the band structure may be helpful for improving the activity of photocatalysts and the doped systems have net magnetic moments,meaning that they are easily recycled and can be reused.展开更多
基金Supported by the Ministry of Education of China (No. 208066)the Education Department of Fujian Province (JA07029)+1 种基金the Natural Science Foundation of Fujian Province (2010J01026)the State Key Laboratory of Structural Chemistry (No. 20080053)
文摘A novel polyoxometalate {[Ag^I(4,4'-bipy)]3[PW12O40]}·(4,4'-bipy)·4H2O 1 has been synthesized hydrothermally and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal of 1 belongs to the triclinic system, space group P1 with a = 11.3710(17), b = 12.0701(16), c = 13.1061(12) A, α = 112.838(3), β = 94.545(6), γ = 99.526(4)°, V = 1614.4(4) A^3, Mr = 3825.40, Z = 1, Dc = 3.935, μ = 22.289mm^-1, F(000) = 1692, the final R = 0.0507 and wR = 0.1054. X-ray diffraction analysis reveals that the molecular structure of 1 consists of three coordinated cations [AgI(4,4'-bipy)]+, a polyanion unit [PW12O40]3-, and a discrete 4,4′-bipy molecule. Significantly, there exist two crystallographically independent silver(I) centers in 1 and all [AgI(4,4'-bipy)]^+ cations are linked with each other to form a one-dimensional Ag-4,4'-bipy polymer chain. The neighboring polymer chains are further interconnected to form a 3D framework by the covalent effect of silver atoms and terminal oxygen atoms of the polyanion. The electrochemical behaviors of 1 have also been studied in detail by cyclic voltammograms.
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2)product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
文摘Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Heteroatom modification is one of the most effective strategies for boosting catalytic performance,as it can regulate the physicochemical properties of host catalysts to improve their intrinsic activity.Herein,aiming to provide an overview of the impact of heteroatoms on catalytic activity at the atomic level,we present a review of the key role of heteroatoms in enhancing reaction kinetics based on the reaction pathways of the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline media.In particular,the introduction of heteroatoms can directly and indirectly optimize the interactions between the active sites and intermediates,thus improving the intrinsic activity.To clearly illustrate this influence in detail,we have summarized a series of representative heteroatom-modified electrocatalysts and discussed the important roles of heteroatoms in the OER and HER reaction pathways.Finally,some challenges and perspectives for heteroatom-modified electrodes are discussed.We hope that this review will be helpful for the development of efficient and low-cost electrocatalysts for water electrolysis and other energy conversion applications.
文摘TiO2 nanoparticles were prepared using the hydrothermal method and modified with CgN to syn-thesize a Type-Ⅱheterojunction semiconductor photocatalyst,TiO2-C;Na.In addition,a carbon layerwas coated onto the TiO2 nanoparticles and the obtained material was uniformly covered on thesurface of CaNa to form an all-solid-state Z-scheme semiconductor photocatalyst,TiO2-C-C3N4,Through characterization by XRD,XPS,SEM,TEM,BET,photoelectrochemical experiments,UV-visible diffuse reflection,and PL spectroscopy,the charge transfer mechanism and band gappositions for the composite photocatalysts were analyzed.The Type-Ⅱand all-solid-state Z-schemeheterojunction structures were compared.By combining microscopic internal mechanisms withmacroscopic experimental phenomena,the relationship between performance and structure wasverified.Experimental methods were used to explore the adaptation degree of different photocata-lytic mechanisms using the same degradation system.This study highlights effective photocatalystdesign to meet the requirements for specific degradation conditions.
基金supported by the National Natural Science Foundation of China(21377044,11304234,21573085)the Key Project of Natural Science Foundation of Hubei Province(2015CFA037)~~
文摘Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximation(LSDA)+U method on typical divalent metal oxide semiconductors CuO,NiO,Ni‐doped CuO,and Cu‐doped NiO.It is found that the influence of Ni doping on the spatial structure of CuO and that of Cu doping on the spatial structure of NiO are negligible because of the similar radii of Ni2+and Cu2+.The valence band and conduction band for Ni‐doped CuO are clearly spin‐split,corresponding to a net effective magnetic moment ofμeff=1.66μB.This may improve the photocatalytic efficiency and raise the recycle rate of photocatalysts.In the Cu‐doped NiO system,the presence of Cu3d states near to the Fermi level increases the width of the valence band and narrows the band gap with respect to that in pure NiO.Beyond the Cu3d states,within the band gap,appear two energy levels around the Fermi level,which may effectively separate the electron‐hole pair and also lead to enhanced absorption of visible light and infrared light.It can be concluded that the observed changes in the band structure may be helpful for improving the activity of photocatalysts and the doped systems have net magnetic moments,meaning that they are easily recycled and can be reused.