变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,...变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。展开更多
归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF...归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。展开更多
文摘变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。
文摘归一化植被指数(normalized difference vegetation index,NDVI)时间序列已广泛应用于植被信息提取研究,然而目前NDVI时间序列的研究主要集中于中低分辨率遥感影像,从而影响了植被信息提取的精度。随着中国高分专项首颗卫星高分一号(GF-1)的发射,为高分辨率NDVI时间序列的构建提供了可能。该文尝试利用GF-1卫星16 m宽覆盖(wide field of view,WFV)影像,构建16 m分辨率NDVI时间序列,以河北省唐山市南部区域为研究区,开展作物分类研究。该文采用覆盖作物完整生长期的GF-1数据构建NDVI时间序列,避免了利用自然年(1-12月)数据构建NDVI时间序列的不足,有助于作物信息的提取。通过分析样地的NDVI时序曲线,发现GF-1/WFV NDVI时间序列能够清晰地区分不同作物的物候差异,捕捉作物特有的生长特性,而且能够识别研究区当年的作物种植模式。该文分别采用最大似然法、马氏距离、最小距离、神经网络分类、支持向量机(support vector machine,SVM)等分类方法,基于GF-1/WFV NDVI时间序列对研究区作物进行分类,研究结果表明SVM分类方法总体精度最高,达到96.33%。同时该文还采用时间序列谐波分析法(harmonic analysis of time series,HANTS)对NDVI时间序列进行了平滑处理,结果表明处理后的NDVI时间序列能更好地描述作物的物候特性,作物分类精度得到进一步提高。