汽油辛烷值不仅影响汽油的经济效益,也关乎汽车尾气排放量,因此精确预测成品汽油的辛烷值对国民经济发展和环境保护都有着重要意义。为从高维的工业汽油数据集中准确预测出辛烷值含量,首先提出了一种互信息法回归(Mutual information re...汽油辛烷值不仅影响汽油的经济效益,也关乎汽车尾气排放量,因此精确预测成品汽油的辛烷值对国民经济发展和环境保护都有着重要意义。为从高维的工业汽油数据集中准确预测出辛烷值含量,首先提出了一种互信息法回归(Mutual information regression,MIR)-递归嵌入式特征选择(Embedded feature selection,EFS)融合降维算法对数据特征进行评分,筛选出30个特征作为建模的主要变量;然后基于优化后的自适应集成学习随机森林算法建立了辛烷值预测模型;最后基于多种互补判别准则,与现有方法进行了充分仿真计算对比。结果显示,改进的MIR-EFS融合降维算法将数据维度减少了89.65%,训练时间减少了81.43%,预测数据的均方误差(MSE)、均方根误差(RMSE)、最小误差(Min Error)和回归平方和(ESS)分别为0.017、0.13、0.023和0.28。与现有方法相比,MIR-EFS融合降维算法的复杂度性能与计算结果更优,这表明改进的MIR-EFS融合降维算法能够准确地获取成品汽油中辛烷值的含量,为汽油辛烷值预测提供可参考的算法支持。展开更多