LAMOST Data Release 5,covering 17000 deg^(2) from-10°to 80°in declination,contains 9 million co-added low-resolution spectra of celestial objects,each spectrum combined from repeat exposure of two to tens of...LAMOST Data Release 5,covering 17000 deg^(2) from-10°to 80°in declination,contains 9 million co-added low-resolution spectra of celestial objects,each spectrum combined from repeat exposure of two to tens of times during Oct 2011 to Jun 2017.In this paper,we present the spectra of individual exposures for all the objects in LAMOST Data Release 5.For each spectrum,the equivalent width of 60lines from 11 different elements are calculated with a new method combining the actual line core and fitted line wings.For stars earlier than F type,the Balmer lines are fitted with both emission and absorption profiles once two components are detected.Radial velocity of each individual exposure is measured by minimizing χ^(2) between the spectrum and its best template.The database for equivalent widths of spectral lines and radial velocities of individual spectra are available online.Radial velocity uncertainties with different stellar type and signal-to-noise ratio are quantified by comparing different exposure of the same objects.We notice that the radial velocity uncertainty depends on the time lag between observations.For stars observed in the same day and with signal-to-noise ratio higher than 20,the radial velocity uncertainty is below 5 km s^(-1),and increases to 10 km s^(-1) for stars observed in different nights.展开更多
基金support of the National Key R&D Program of China(2019YFA0405000)the National Natural Science Foundation of China(NSFC)(Grant Nos.12090040 and 12090041)+4 种基金the support of NSFC(Grant No.11973054)the support of the Youth Innovation Promotion Association of Chinese Academy of Sciences(id.2020060)supported by Cultivation Project for LAMOST Scientific PayoffResearch Achievement of CAMS-CASFunding for the project has been provided by the National Development and Reform Commission。
文摘LAMOST Data Release 5,covering 17000 deg^(2) from-10°to 80°in declination,contains 9 million co-added low-resolution spectra of celestial objects,each spectrum combined from repeat exposure of two to tens of times during Oct 2011 to Jun 2017.In this paper,we present the spectra of individual exposures for all the objects in LAMOST Data Release 5.For each spectrum,the equivalent width of 60lines from 11 different elements are calculated with a new method combining the actual line core and fitted line wings.For stars earlier than F type,the Balmer lines are fitted with both emission and absorption profiles once two components are detected.Radial velocity of each individual exposure is measured by minimizing χ^(2) between the spectrum and its best template.The database for equivalent widths of spectral lines and radial velocities of individual spectra are available online.Radial velocity uncertainties with different stellar type and signal-to-noise ratio are quantified by comparing different exposure of the same objects.We notice that the radial velocity uncertainty depends on the time lag between observations.For stars observed in the same day and with signal-to-noise ratio higher than 20,the radial velocity uncertainty is below 5 km s^(-1),and increases to 10 km s^(-1) for stars observed in different nights.