We demonstrate by finite-difference time-domain simulations that a one-dimensional (1D) photonic crys- tal (PC) structure between glass substrate and indium tin oxide layer can improve the light extraction efficie...We demonstrate by finite-difference time-domain simulations that a one-dimensional (1D) photonic crys- tal (PC) structure between glass substrate and indium tin oxide layer can improve the light extraction efficiency of organic light-emitting diodes. The extraction efficiency depends on the emitters' positions varying laterally in a unit cell of PC. The highest efficiency is obtained when the emitters are under higher refractive index strips. Efficiency decreases when the emitters shift to lower refractive index strips. Simulations for both transverse magnetic and transverse electric modes indicate that when emitters are close to the middle of the higher refractive index strips, the guided wave transmits with less divergence and inhibited reflection because of the guiding effect of higher refractive index strips. A modified method that considers the position effects is proposed to calculate the extraction efficiency more precisely.展开更多
A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular mu...A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular multiplexing technique, dynamically multiplexed holographic videos are realized. Moreover, the reconstructed RGB images are merged into a color image, which illustrates the possibility of a color holographic three-dimensional (3D) display by holographic multiplexing of the LC cell.展开更多
基金supported by the National Natural Science Foundation of China (No. 61007025)the Ministry of Education (No. 20100073120034)the Science and Technology Commission of Shanghai Municipality (Nos.11PJ1404900 and 12JC1404900)
文摘We demonstrate by finite-difference time-domain simulations that a one-dimensional (1D) photonic crys- tal (PC) structure between glass substrate and indium tin oxide layer can improve the light extraction efficiency of organic light-emitting diodes. The extraction efficiency depends on the emitters' positions varying laterally in a unit cell of PC. The highest efficiency is obtained when the emitters are under higher refractive index strips. Efficiency decreases when the emitters shift to lower refractive index strips. Simulations for both transverse magnetic and transverse electric modes indicate that when emitters are close to the middle of the higher refractive index strips, the guided wave transmits with less divergence and inhibited reflection because of the guiding effect of higher refractive index strips. A modified method that considers the position effects is proposed to calculate the extraction efficiency more precisely.
基金sponsored by the National"973"Program of China(No.2013CB328804)the National Natural Science Foundation of China(No.61307028)the Science & Technology Commission of Shanghai Municipality(Nos.13ZR1420000 and 11JC1405300)
文摘A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular multiplexing technique, dynamically multiplexed holographic videos are realized. Moreover, the reconstructed RGB images are merged into a color image, which illustrates the possibility of a color holographic three-dimensional (3D) display by holographic multiplexing of the LC cell.