以深圳市出租车GPS数据为基础,运用时空拓展的轨迹数据场聚类方法提取城市交通热点区域,结合城市POI(Point of Interest)数据和地理实况对热点区域加以理解和分析。基于复杂网络的视角,计算交互分析指标并可视化热点区域的空间交互网络...以深圳市出租车GPS数据为基础,运用时空拓展的轨迹数据场聚类方法提取城市交通热点区域,结合城市POI(Point of Interest)数据和地理实况对热点区域加以理解和分析。基于复杂网络的视角,计算交互分析指标并可视化热点区域的空间交互网络,探究城市交通和居民出行的时空规律。结果表明:1)交通枢纽(机场、火车站和口岸)、综合性商圈、城市重要主干道周边和城市商务中心在节假日和工作日均表现为持续热点区域;2)节假日热点区域分布较"发散",主要反映了居民个性化出行需求;3)工作日热点区域分布较"收敛",主要表现为职住分离的通勤模式;4)不同热点区域在空间交互网络中的重要性存在明显差异,其空间交互体现了距离衰减效应和局部抱团现象,居民出行的热点区域网络本身具有小世界效应和无标度特征。展开更多
文摘以深圳市出租车GPS数据为基础,运用时空拓展的轨迹数据场聚类方法提取城市交通热点区域,结合城市POI(Point of Interest)数据和地理实况对热点区域加以理解和分析。基于复杂网络的视角,计算交互分析指标并可视化热点区域的空间交互网络,探究城市交通和居民出行的时空规律。结果表明:1)交通枢纽(机场、火车站和口岸)、综合性商圈、城市重要主干道周边和城市商务中心在节假日和工作日均表现为持续热点区域;2)节假日热点区域分布较"发散",主要反映了居民个性化出行需求;3)工作日热点区域分布较"收敛",主要表现为职住分离的通勤模式;4)不同热点区域在空间交互网络中的重要性存在明显差异,其空间交互体现了距离衰减效应和局部抱团现象,居民出行的热点区域网络本身具有小世界效应和无标度特征。