期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
无转速计下变工况滚动轴承故障特征量化表征提取 被引量:6
1
作者 张焱 +1 位作者 王平 汤宝平 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第8期104-114,共11页
无转速计下变工况滚动轴承振动信号中各信号分量来源难以确定以及瞬时转频准确估计困难,而现有大多数研究依赖于已知转速并关注于时变冲击带来的频谱畸变,鲜有在无转速计变工况下开展轴承故障特征提取探究。提出无转速计下变工况滚动轴... 无转速计下变工况滚动轴承振动信号中各信号分量来源难以确定以及瞬时转频准确估计困难,而现有大多数研究依赖于已知转速并关注于时变冲击带来的频谱畸变,鲜有在无转速计变工况下开展轴承故障特征提取探究。提出无转速计下变工况滚动轴承故障特征量化表征提取方法,从振动信号希尔伯特包络中提取轴承故障特征,为定量描述各振动包络分量间关系,提出基于来源假设的特征模型与量化表征方法,利用同步压缩小波变换的时频重排与可重构特性,基于最大能量与最小曲率准则依次估计多时频脊瞬时频率,为降低广义解调后振动包络中干扰分量对量化结果的影响,提出基于选择性重构与广义解调的变工况下干扰抑制与平稳化重置方法。将所提方法用于仿真信号以及轴承振动数据分析,10 k长度信号包络分量在不同来源假设下的特征提取用时约为3 s,同时在无转速计下实现了对2 s内转速变化分别约为300 r/min和200 r/min的内圈故障轴承以及复合故障轴承的特征提取。 展开更多
关键词 无转速 变工况 轴承 同步压缩变换 广义解调 来源假设
下载PDF
多小波系数增强动态聚合联邦深度网络的多工况故障诊断
2
作者 张焱 +1 位作者 韩延 黄庆卿 《电子测量与仪器学报》 CSCD 北大核心 2023年第5期68-78,共11页
针对分布式场景下单节点样本有限、多节点间工况分布不平衡等导致的深度学习故障诊断精度低的问题,提出一种多小波系数增强动态聚合联邦深度网络用于分布式小样本下的多工况机械故障诊断。提出多小波系数增强动态聚合联邦深度网络的诊... 针对分布式场景下单节点样本有限、多节点间工况分布不平衡等导致的深度学习故障诊断精度低的问题,提出一种多小波系数增强动态聚合联邦深度网络用于分布式小样本下的多工况机械故障诊断。提出多小波系数增强动态聚合联邦深度网络的诊断框架,单终端节点从本地样本中提取小波系数特征,提出多小波系数深度网络融合的特征增强方法,局部模型从多样性小波系数集合中提取更具判别性故障特征;聚合节点通过对多终端节点局部模型的聚合以构建全局联邦深度网络模型,并用于多工况故障诊断;为降低多节点间数据非独立同分布的影响,提出平衡模型贡献度的联邦动态加权聚合算法。轴承振动数据分析结果表明,所提方法能在分布式小样本条件下实现高精度的多工况故障诊断。 展开更多
关键词 故障诊断 小样本 多工况 联邦学习 特征增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部