In recent years, cropland development in high-slope regions in China has alleviated the contradiction between total cropland balance and insufficient development space. However, this change in cropland slope brings ri...In recent years, cropland development in high-slope regions in China has alleviated the contradiction between total cropland balance and insufficient development space. However, this change in cropland slope brings risks to sustainable resource utilization. This study explored the slope characteristics of cropland in China from 1990 to 2020 and assessed the gained cropland stability. The results showed that(1) From 1990 to 2020, the lost cropland area was greater than the gained area, and the distribution showed an uphill trend.(2) The areas with a significant upslope change in cropland were mainly concentrated in the southern plain, containing the central grain-producing regions at its core and other well-developed eastern coastal areas.(3) The areas with distinct downslope cropland changes were mainly concentrated in the upper reaches of the Yangtze and Yellow rivers and the ecologically fragile areas of Inner Mongolia and the Loess Plateau.(4) The gained cropland stability was unsatisfactory;about one-third of the gained cropland was unstable, which had the highest abandonment rate within 5 years, and the gained cropland stability decreased with the slope. In addition, this study explored cropland conversion types at different slopes in different regions and discussed the reasons for slope cropland changes and gained cropland instability in different regions. Finally, optimization policies were proposed to protect and control newly gained cropland.展开更多
灰色聚类法已经运用于土壤重金属污染评价中,然而此法在确定聚类权重时仅考虑重金属浓度,忽略了衡量重金属毒性强弱的重要指标生物毒性指数。为了更客观和准确地反映土壤重金属的污染程度,将生物毒性指数引入到聚类指标权重中,构建GCM_C...灰色聚类法已经运用于土壤重金属污染评价中,然而此法在确定聚类权重时仅考虑重金属浓度,忽略了衡量重金属毒性强弱的重要指标生物毒性指数。为了更客观和准确地反映土壤重金属的污染程度,将生物毒性指数引入到聚类指标权重中,构建GCM_CB(grey clustering method_concentration and biotoxicity)土壤重金属污染评价模型。通过对华东某地区的10个区域土壤重金属污染进行分析评价,并与常用评价方法对比研究,表明:其多数样点的评价结果基本一致,但针对样品4和样品9中的元素Hg,因其强毒性,使得评价等级由I级定为II级,从而提高了评价方法的灵敏度,更加符合该区域的实际土壤污染情况。展开更多
基金Zhejiang Provincial Philosophy and Social Science Planning Project,No.24JCXK04YBNatural Science Foundation of Zhejiang Province,No.Q22D018818Zhejiang Provincial Postdoctoral Research Foundation,No.ZJ2023051。
文摘In recent years, cropland development in high-slope regions in China has alleviated the contradiction between total cropland balance and insufficient development space. However, this change in cropland slope brings risks to sustainable resource utilization. This study explored the slope characteristics of cropland in China from 1990 to 2020 and assessed the gained cropland stability. The results showed that(1) From 1990 to 2020, the lost cropland area was greater than the gained area, and the distribution showed an uphill trend.(2) The areas with a significant upslope change in cropland were mainly concentrated in the southern plain, containing the central grain-producing regions at its core and other well-developed eastern coastal areas.(3) The areas with distinct downslope cropland changes were mainly concentrated in the upper reaches of the Yangtze and Yellow rivers and the ecologically fragile areas of Inner Mongolia and the Loess Plateau.(4) The gained cropland stability was unsatisfactory;about one-third of the gained cropland was unstable, which had the highest abandonment rate within 5 years, and the gained cropland stability decreased with the slope. In addition, this study explored cropland conversion types at different slopes in different regions and discussed the reasons for slope cropland changes and gained cropland instability in different regions. Finally, optimization policies were proposed to protect and control newly gained cropland.
文摘灰色聚类法已经运用于土壤重金属污染评价中,然而此法在确定聚类权重时仅考虑重金属浓度,忽略了衡量重金属毒性强弱的重要指标生物毒性指数。为了更客观和准确地反映土壤重金属的污染程度,将生物毒性指数引入到聚类指标权重中,构建GCM_CB(grey clustering method_concentration and biotoxicity)土壤重金属污染评价模型。通过对华东某地区的10个区域土壤重金属污染进行分析评价,并与常用评价方法对比研究,表明:其多数样点的评价结果基本一致,但针对样品4和样品9中的元素Hg,因其强毒性,使得评价等级由I级定为II级,从而提高了评价方法的灵敏度,更加符合该区域的实际土壤污染情况。