针对生鲜农产品零售商库存成本控制问题,将该问题转换为马尔可夫决策过程,引入三参数Weibull函数,描述生鲜农产品的损腐特征,并考虑过期、损腐、缺货、订货和持有等成本,从供应链视角建立生鲜农产品库存成本控制模型,使用深度强化学习...针对生鲜农产品零售商库存成本控制问题,将该问题转换为马尔可夫决策过程,引入三参数Weibull函数,描述生鲜农产品的损腐特征,并考虑过期、损腐、缺货、订货和持有等成本,从供应链视角建立生鲜农产品库存成本控制模型,使用深度强化学习中深度双Q网络(Double Deep Q Network,DDQN)优化订货,以控制库存总成本。实验结果表明,相比单周期随机型库存成本控制模型和固定订货量库存成本控制模型,DDQN模型的总成本分别降低约6%和11%,具有实际应用价值。展开更多
在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCN...在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCNN高效地从文本数据中提取关键特征;其次,通过多头注意力机制进行不同子空间的特征提取;最后,使用xDeepFM模型实现深度显隐特征的交叉融合。实验表明,在两个互联网营销活动数据集上,该模型的AUC值分别达到了69.09%和72.98%,表现出了较好的性能,与xDeepFM等流行模型及融合注意力机制的改进模型相比均有一定提升。展开更多
文摘针对生鲜农产品零售商库存成本控制问题,将该问题转换为马尔可夫决策过程,引入三参数Weibull函数,描述生鲜农产品的损腐特征,并考虑过期、损腐、缺货、订货和持有等成本,从供应链视角建立生鲜农产品库存成本控制模型,使用深度强化学习中深度双Q网络(Double Deep Q Network,DDQN)优化订货,以控制库存总成本。实验结果表明,相比单周期随机型库存成本控制模型和固定订货量库存成本控制模型,DDQN模型的总成本分别降低约6%和11%,具有实际应用价值。
文摘在当前的互联网营销环境中,多数模型尚未深入分析用户特征及用户行为的复杂性。对此,文章提出一种基于文本卷积神经网络(TextCNN)与多头注意力机制增强的xDeepFM(eXtreme Deep Factorization Machine)模型,即xDTCMAFM。首先,利用TextCNN高效地从文本数据中提取关键特征;其次,通过多头注意力机制进行不同子空间的特征提取;最后,使用xDeepFM模型实现深度显隐特征的交叉融合。实验表明,在两个互联网营销活动数据集上,该模型的AUC值分别达到了69.09%和72.98%,表现出了较好的性能,与xDeepFM等流行模型及融合注意力机制的改进模型相比均有一定提升。