目的针对传统Retinex算法存在的泛灰、光晕、边界突出以及高曝光区域细节增强不明显的现象,将Retinex和多聚焦融合的思想融合在一起,提出一种基于Retinex的改进双边滤波的多聚焦融合算法。方法首先根据图像情况在像素级层次将反射图像...目的针对传统Retinex算法存在的泛灰、光晕、边界突出以及高曝光区域细节增强不明显的现象,将Retinex和多聚焦融合的思想融合在一起,提出一种基于Retinex的改进双边滤波的多聚焦融合算法。方法首先根据图像情况在像素级层次将反射图像分解为最优亮暗区域两部分,然后利用线性积分变换和邻近像素最优推荐算法,将原始图像与最优亮区域多聚焦融合得到图像T,再将图像T与最优暗区域重复以上步骤得到图像S,最后利用引导滤波进行边界修复得到最终图像。结果选择两组图像girl和boat进行实验,与SSR(single scale Retinex)、BSSR(Retinex algorithm based on bilateral filtering)、BIFT(Retinex image enhancement algorithm based on image fusion technology)和RVRG(Retinex variational model based on relative gradient regularization and its application) 4种方法进行对比,本文方法在方差和信息熵两方面表现出明显优势。在均值方面,比BIFT和RVRG分别平均提高16.37和20.90;在方差方面,比BIFT和RVRG分别平均提高1.25和4.42;在信息熵方面,比BIFT和RVRG分别平均提高0.1和0.17;在平均梯度方面,比BIFT和RVRG分别平均提高1.21和0.42。对比BIFT和RVRG的实验数据,证明了本文方法的有效性。结论实验结果表明,相比较其他图像增强算法,本文算法能更有效抑制图像的泛灰、光晕和边界突出现象,图像细节增强效果特别显著。展开更多
文摘目的针对传统Retinex算法存在的泛灰、光晕、边界突出以及高曝光区域细节增强不明显的现象,将Retinex和多聚焦融合的思想融合在一起,提出一种基于Retinex的改进双边滤波的多聚焦融合算法。方法首先根据图像情况在像素级层次将反射图像分解为最优亮暗区域两部分,然后利用线性积分变换和邻近像素最优推荐算法,将原始图像与最优亮区域多聚焦融合得到图像T,再将图像T与最优暗区域重复以上步骤得到图像S,最后利用引导滤波进行边界修复得到最终图像。结果选择两组图像girl和boat进行实验,与SSR(single scale Retinex)、BSSR(Retinex algorithm based on bilateral filtering)、BIFT(Retinex image enhancement algorithm based on image fusion technology)和RVRG(Retinex variational model based on relative gradient regularization and its application) 4种方法进行对比,本文方法在方差和信息熵两方面表现出明显优势。在均值方面,比BIFT和RVRG分别平均提高16.37和20.90;在方差方面,比BIFT和RVRG分别平均提高1.25和4.42;在信息熵方面,比BIFT和RVRG分别平均提高0.1和0.17;在平均梯度方面,比BIFT和RVRG分别平均提高1.21和0.42。对比BIFT和RVRG的实验数据,证明了本文方法的有效性。结论实验结果表明,相比较其他图像增强算法,本文算法能更有效抑制图像的泛灰、光晕和边界突出现象,图像细节增强效果特别显著。