Many cities face heat wave(HW) events, combined with the existent surface urban heat island(SUHI) effects. This places pressure on human settlements and sustainable development. However, few studies have investigated ...Many cities face heat wave(HW) events, combined with the existent surface urban heat island(SUHI) effects. This places pressure on human settlements and sustainable development. However, few studies have investigated the SUHI effects from the perspective of HWs. In this study, the summer HWs in Beijing from 2001 to 2021 were calculated, and the evolution of HWs and SUHIs was quantitatively analyzed based on the dynamic nature of the urban-rural boundary. Beijing experienced 27 HWs in the 21 years, including 10 instances in June, four in July, and 13 in August. The SUHI varied during HWs, between 2–3℃ in most years. The highest SUHI occurred in 2019, reaching 3.99℃ and covering the largest area(10,887 km^(2)). The fluctuation in HWs and SUHIs generally displayed the same spatiotemporal pattern, and HWs amplified the SUHIs to a certain extent, with the highest correlation coefficient being 0.44. Additionally, impervious surfaces and cropland contributed most to SUHIs,and night light enhanced SUHIs. Observing the co-evolution of HWs and SUHIs will be helpful for ecological maintenance and urban infrastructure optimization and provide theoretical support for reducing heat risk and improving the human settlement environment.展开更多
基金National Natural Science Foundation of China,No.41771178, No.42030409Fundamental Research Funds for the Central Universities,No.N2111003Basic Scientific Research Project (Key Project) of the Education Department of Liaoning Province,No.LJKZ0964。
文摘Many cities face heat wave(HW) events, combined with the existent surface urban heat island(SUHI) effects. This places pressure on human settlements and sustainable development. However, few studies have investigated the SUHI effects from the perspective of HWs. In this study, the summer HWs in Beijing from 2001 to 2021 were calculated, and the evolution of HWs and SUHIs was quantitatively analyzed based on the dynamic nature of the urban-rural boundary. Beijing experienced 27 HWs in the 21 years, including 10 instances in June, four in July, and 13 in August. The SUHI varied during HWs, between 2–3℃ in most years. The highest SUHI occurred in 2019, reaching 3.99℃ and covering the largest area(10,887 km^(2)). The fluctuation in HWs and SUHIs generally displayed the same spatiotemporal pattern, and HWs amplified the SUHIs to a certain extent, with the highest correlation coefficient being 0.44. Additionally, impervious surfaces and cropland contributed most to SUHIs,and night light enhanced SUHIs. Observing the co-evolution of HWs and SUHIs will be helpful for ecological maintenance and urban infrastructure optimization and provide theoretical support for reducing heat risk and improving the human settlement environment.