The gelling process in the preparation of tin oxide materials based on tin tetrabutoxide is studied. Sn(OBun)4 modified by two moles of acetylacetone (AcAc) has a stable six-member ring structure and is less susceptiv...The gelling process in the preparation of tin oxide materials based on tin tetrabutoxide is studied. Sn(OBun)4 modified by two moles of acetylacetone (AcAc) has a stable six-member ring structure and is less susceptive to water. In a system with a lower molar ratio of acetylacetone to Sn(OBun)4 ([AcAc]/[Sn(OBun)4]<2.0) or a larger portion of water ([H2O]/[Sn(OBun)4]>2.5), colloidal suspension or white precipitation will take place. A system with molar ratios of both acetylacetone to Sn(OBun)4 and water to Sn(OBun)4 at 2.0 is transparent and olivaceous sol. As catalysts, hydrofluoric, hydrochloric, hydrobromic and acetic acids, and ammonia all accelerate the hydrolysis and condensation of Sn(OBun)4 during the sol-gel process. Light scattering measurement indicates that cluster size distribution in the sol system undergoes gradual broadening during the sol-gel transition.展开更多
文摘The gelling process in the preparation of tin oxide materials based on tin tetrabutoxide is studied. Sn(OBun)4 modified by two moles of acetylacetone (AcAc) has a stable six-member ring structure and is less susceptive to water. In a system with a lower molar ratio of acetylacetone to Sn(OBun)4 ([AcAc]/[Sn(OBun)4]<2.0) or a larger portion of water ([H2O]/[Sn(OBun)4]>2.5), colloidal suspension or white precipitation will take place. A system with molar ratios of both acetylacetone to Sn(OBun)4 and water to Sn(OBun)4 at 2.0 is transparent and olivaceous sol. As catalysts, hydrofluoric, hydrochloric, hydrobromic and acetic acids, and ammonia all accelerate the hydrolysis and condensation of Sn(OBun)4 during the sol-gel process. Light scattering measurement indicates that cluster size distribution in the sol system undergoes gradual broadening during the sol-gel transition.