期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GAF-CNN的电力系统暂态稳定评估 被引量:7
1
作者 李欣 +4 位作者 李新宇 陈德秋 鲁玲 郭攀锋 柳圣池 《智慧电力》 北大核心 2023年第11期45-52,共8页
为保障电力系统安全稳定运行,针对电力系统暂态稳定评估(TSA)问题,提出了一种基于数据图像化的深度学习方法。首先,通过格拉姆角场(GAF)将原始的电力系统数据转为易于区分稳定与失稳的二维图像。其次,利用得到的二维图像数据集训练卷积... 为保障电力系统安全稳定运行,针对电力系统暂态稳定评估(TSA)问题,提出了一种基于数据图像化的深度学习方法。首先,通过格拉姆角场(GAF)将原始的电力系统数据转为易于区分稳定与失稳的二维图像。其次,利用得到的二维图像数据集训练卷积神经网络(CNN)模型并进行在线应用。最后,通过在CEPRI 36节点系统和含风机的IEEE39节点系统、IEEE300节点系统中对所提TSA方法进行验证,结果表明了所提方法的有效性。 展开更多
关键词 暂态稳定评估 深度学习 格拉姆角场 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部