作为目前最有潜力的大规模商业化减碳手段之一,基于化学溶剂吸收的燃烧后碳捕集技术有望实现化石能源的清洁使用。在燃煤火电厂动态运行的基础上耦合碳捕集系统对于推动“碳中和”进程具有重要意义。但是,大多数研究没有考虑诸如用电价...作为目前最有潜力的大规模商业化减碳手段之一,基于化学溶剂吸收的燃烧后碳捕集技术有望实现化石能源的清洁使用。在燃煤火电厂动态运行的基础上耦合碳捕集系统对于推动“碳中和”进程具有重要意义。但是,大多数研究没有考虑诸如用电价格波动和用电量的变化等因素对耦合碳捕集系统的电厂的影响。为此,该文在建立电厂与碳捕集装置协同调度模型的基础上,引入信息间隙决策理论(information gap decision theory, IGDT)以同时满足系统的鲁棒性和经济性要求,通过风险追求和风险规避2种决策角度得到不同的调度方案,为系统的动态运行提供指导性意见。该文首先构建了确定性电厂与碳捕集装置耦合调度模型;其次,针对实时市场中负荷需求的不确定性,通过引入信息间隙决策理论,得到不同风险态度下的不确定性电厂与碳捕集装置耦合调度模型,优化确定系统调度的决策方案;最后,通过算例分析得到持有不同风险态度下的电厂与碳捕集装置的调度方案,验证了模型的可靠性和有效性。展开更多
文摘作为目前最有潜力的大规模商业化减碳手段之一,基于化学溶剂吸收的燃烧后碳捕集技术有望实现化石能源的清洁使用。在燃煤火电厂动态运行的基础上耦合碳捕集系统对于推动“碳中和”进程具有重要意义。但是,大多数研究没有考虑诸如用电价格波动和用电量的变化等因素对耦合碳捕集系统的电厂的影响。为此,该文在建立电厂与碳捕集装置协同调度模型的基础上,引入信息间隙决策理论(information gap decision theory, IGDT)以同时满足系统的鲁棒性和经济性要求,通过风险追求和风险规避2种决策角度得到不同的调度方案,为系统的动态运行提供指导性意见。该文首先构建了确定性电厂与碳捕集装置耦合调度模型;其次,针对实时市场中负荷需求的不确定性,通过引入信息间隙决策理论,得到不同风险态度下的不确定性电厂与碳捕集装置耦合调度模型,优化确定系统调度的决策方案;最后,通过算例分析得到持有不同风险态度下的电厂与碳捕集装置的调度方案,验证了模型的可靠性和有效性。