期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Kinect手势识别的应用与研究
被引量:
14
1
作者
于泽
升
崔文华
史添玮
《计算机科学》
CSCD
北大核心
2016年第S2期568-571,共4页
为解决当前智能家居系统操作繁琐的问题,同时为获得更简单的控制方式,并增加用户的体验感受,研究了基于Kinect骨骼信息的手势识别技术,并将其融入至智能家居的人机交互系统中。在该系统中,用户可以自定义手势动作或语音实现家居设备的...
为解决当前智能家居系统操作繁琐的问题,同时为获得更简单的控制方式,并增加用户的体验感受,研究了基于Kinect骨骼信息的手势识别技术,并将其融入至智能家居的人机交互系统中。在该系统中,用户可以自定义手势动作或语音实现家居设备的智能控制。使用了一种基于加权动态时间规整的模板匹配手势识别算法。通过Kinect的深度摄像头获取手势深度图像和骨骼图像数据,并采用加权动态时间规整算法进行识别。实验表明使用该算法实现手势识别是可行且有效的,且其最佳识别位置是在Kinect的正前方2~2.5m处,识别准确率达到96%左右。
展开更多
关键词
KINECT
手势识别
加权动态时间规整算法
智能家居
下载PDF
职称材料
题名
基于Kinect手势识别的应用与研究
被引量:
14
1
作者
于泽
升
崔文华
史添玮
机构
辽宁科技大学电子与信息工程学院
辽宁科技大学国际金融与银行学院
出处
《计算机科学》
CSCD
北大核心
2016年第S2期568-571,共4页
基金
辽宁省教育厅基金项目(2016HZZD05)资助
文摘
为解决当前智能家居系统操作繁琐的问题,同时为获得更简单的控制方式,并增加用户的体验感受,研究了基于Kinect骨骼信息的手势识别技术,并将其融入至智能家居的人机交互系统中。在该系统中,用户可以自定义手势动作或语音实现家居设备的智能控制。使用了一种基于加权动态时间规整的模板匹配手势识别算法。通过Kinect的深度摄像头获取手势深度图像和骨骼图像数据,并采用加权动态时间规整算法进行识别。实验表明使用该算法实现手势识别是可行且有效的,且其最佳识别位置是在Kinect的正前方2~2.5m处,识别准确率达到96%左右。
关键词
KINECT
手势识别
加权动态时间规整算法
智能家居
Keywords
Kinect
Gesture recognition
Weighted DTW algorithm
Smart home
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Kinect手势识别的应用与研究
于泽
升
崔文华
史添玮
《计算机科学》
CSCD
北大核心
2016
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部