超深水打桩锤系统的性能直接影响大型海洋油气平台的建设进度。为深入研究超深水打桩锤系统的故障机理,对系统进行可靠性分析与分配研究。首先,对超深水打桩锤系统进行故障模式与影响分析(failure mode and effect analysis,FMEA),并基...超深水打桩锤系统的性能直接影响大型海洋油气平台的建设进度。为深入研究超深水打桩锤系统的故障机理,对系统进行可靠性分析与分配研究。首先,对超深水打桩锤系统进行故障模式与影响分析(failure mode and effect analysis,FMEA),并基于FMEA结果提出了一种改进的危害性分析(criticality analysis,CA)方法。然后,运用改进的AGREE(advisory group on reliability of electronic equipment,电子设备可靠性咨询组)分配法及基于FMECA(failure mode,effect and criticality analysis,故障模式、影响与危害性分析)的可靠性分配方法,对超深水打桩锤系统的子系统和零部件依次进行可靠性分配研究。最后,在MATLAB App Designer开发环境下对超深水打桩锤系统的CA及可靠性分配过程进行可视化界面设计。结果表明,超深水打桩锤系统共有27种故障模式,钢桩等9个零部件为系统薄弱环节;经一、二次可靠性分配后,系统可靠度分别为0.99906322,0.99906327。超深水打桩锤系统的可靠性研究识别了系统的薄弱环节,为其国产化设计提供了一定的理论指导。展开更多
文摘超深水打桩锤系统的性能直接影响大型海洋油气平台的建设进度。为深入研究超深水打桩锤系统的故障机理,对系统进行可靠性分析与分配研究。首先,对超深水打桩锤系统进行故障模式与影响分析(failure mode and effect analysis,FMEA),并基于FMEA结果提出了一种改进的危害性分析(criticality analysis,CA)方法。然后,运用改进的AGREE(advisory group on reliability of electronic equipment,电子设备可靠性咨询组)分配法及基于FMECA(failure mode,effect and criticality analysis,故障模式、影响与危害性分析)的可靠性分配方法,对超深水打桩锤系统的子系统和零部件依次进行可靠性分配研究。最后,在MATLAB App Designer开发环境下对超深水打桩锤系统的CA及可靠性分配过程进行可视化界面设计。结果表明,超深水打桩锤系统共有27种故障模式,钢桩等9个零部件为系统薄弱环节;经一、二次可靠性分配后,系统可靠度分别为0.99906322,0.99906327。超深水打桩锤系统的可靠性研究识别了系统的薄弱环节,为其国产化设计提供了一定的理论指导。