花生球蛋白、伴花生球蛋白及亚基含量显著影响蛋白质的凝胶性和溶解性等功能特性,进而影响其在肉制品、植物蛋白饮料中的应用效果。目前常采用提取蛋白质后再用电泳及光密度法测定球蛋白、伴球蛋白及亚基含量的方法,操作步骤繁琐,样品...花生球蛋白、伴花生球蛋白及亚基含量显著影响蛋白质的凝胶性和溶解性等功能特性,进而影响其在肉制品、植物蛋白饮料中的应用效果。目前常采用提取蛋白质后再用电泳及光密度法测定球蛋白、伴球蛋白及亚基含量的方法,操作步骤繁琐,样品损失量大。为此收集了178个花生品种,分别提取蛋白,采用电泳法测定球蛋白、伴球蛋白、23.5和37.5 kDa亚基含量并获得大量数据的基础上,利用近红外光谱技术进行整粒花生样品的光谱扫描,将其与传统方法测定的化学值进行拟合,采用偏最小二乘回归(PLSR)化学计量法构建数学模型。通过比较单一和复合光谱预处理方式,对比模型相关系数和误差评估预测模型性能。确定球蛋白模型最佳预处理方法为2^(nd)-der with Detrend,校正集相关系数为0.92,标准差为1.41;伴球蛋白模型最佳预处理方法为Detrend with 1^(st)-der,校正集相关系数为0.85,标准差为1.46;23.5 kDa亚基含量模型最佳预处理方法为Normalization with 2^(nd)-der,校正集相关系数为0.91,标准差为0.53;37.5 kDa模型最佳预处理方法为Detrend with Baseline,校正集相关系数为0.91,标准差为0.89。外部验证结果表明,球蛋白预测均方根误差(square errors of predi ction,SEP)为1.25,伴球蛋白SEP为0.73,23.5 kDa模型SEP为0.47,37.5 kDa模型SEP为0.75。本研究基于近红外光谱技术实现了对整粒花生进行球蛋白、伴球蛋白、23.5 kDa和37.5 kDa亚基含量的同步、快速和无损检测,为育种专家加工专用品种选育和蛋白加工企业原料选用提供了根据。展开更多
花生中蛋白质含量与分布能够显著影响花生制品品质。利用高光谱图像结合化学计量学研究可视化花生中蛋白质含量分布的可行性。从校正后的花生图像的感兴趣区域(region of interest,ROI)中提取光谱信息,通过传统化学方法测定蛋白质含量...花生中蛋白质含量与分布能够显著影响花生制品品质。利用高光谱图像结合化学计量学研究可视化花生中蛋白质含量分布的可行性。从校正后的花生图像的感兴趣区域(region of interest,ROI)中提取光谱信息,通过传统化学方法测定蛋白质含量。比对了不同光谱预处理和回归算法,以二阶导数(the second derivative,2nd-der)为最佳的光谱预处理方法,偏最小二乘法(partial least squares,PLS)为最佳的回归算法。基于预处理后的光谱和花生蛋白质的化学值,建立全波长PLS模型,全波长模型具有良好的性能(校正集相关系数为0.91,校正集标准偏差0.86;预测集相关系数为0.86,预测集标准偏差为0.69)。利用回归系数法(regression coefficient,RC)从全波长模型中选择14个特征波长,建立2nd-der-RC-PLS特征波长模型,模型性能(校正集相关系数为0.86,校正集标准偏差1.03;预测集相关系数为0.80,预测集标准偏差为0.77)与全波长模型相当。采用2nd-der-RC-PLS算法将花生高光谱图像转变成蛋白质含量分布图。成对t检验判断凯氏定氮法与高光谱法无显著性差异。结果表明结合化学计量学的高光谱成像技术为测定花生中蛋白质含量分布提供了一种高效非破坏性方法。展开更多
文摘花生球蛋白、伴花生球蛋白及亚基含量显著影响蛋白质的凝胶性和溶解性等功能特性,进而影响其在肉制品、植物蛋白饮料中的应用效果。目前常采用提取蛋白质后再用电泳及光密度法测定球蛋白、伴球蛋白及亚基含量的方法,操作步骤繁琐,样品损失量大。为此收集了178个花生品种,分别提取蛋白,采用电泳法测定球蛋白、伴球蛋白、23.5和37.5 kDa亚基含量并获得大量数据的基础上,利用近红外光谱技术进行整粒花生样品的光谱扫描,将其与传统方法测定的化学值进行拟合,采用偏最小二乘回归(PLSR)化学计量法构建数学模型。通过比较单一和复合光谱预处理方式,对比模型相关系数和误差评估预测模型性能。确定球蛋白模型最佳预处理方法为2^(nd)-der with Detrend,校正集相关系数为0.92,标准差为1.41;伴球蛋白模型最佳预处理方法为Detrend with 1^(st)-der,校正集相关系数为0.85,标准差为1.46;23.5 kDa亚基含量模型最佳预处理方法为Normalization with 2^(nd)-der,校正集相关系数为0.91,标准差为0.53;37.5 kDa模型最佳预处理方法为Detrend with Baseline,校正集相关系数为0.91,标准差为0.89。外部验证结果表明,球蛋白预测均方根误差(square errors of predi ction,SEP)为1.25,伴球蛋白SEP为0.73,23.5 kDa模型SEP为0.47,37.5 kDa模型SEP为0.75。本研究基于近红外光谱技术实现了对整粒花生进行球蛋白、伴球蛋白、23.5 kDa和37.5 kDa亚基含量的同步、快速和无损检测,为育种专家加工专用品种选育和蛋白加工企业原料选用提供了根据。
文摘花生中蛋白质含量与分布能够显著影响花生制品品质。利用高光谱图像结合化学计量学研究可视化花生中蛋白质含量分布的可行性。从校正后的花生图像的感兴趣区域(region of interest,ROI)中提取光谱信息,通过传统化学方法测定蛋白质含量。比对了不同光谱预处理和回归算法,以二阶导数(the second derivative,2nd-der)为最佳的光谱预处理方法,偏最小二乘法(partial least squares,PLS)为最佳的回归算法。基于预处理后的光谱和花生蛋白质的化学值,建立全波长PLS模型,全波长模型具有良好的性能(校正集相关系数为0.91,校正集标准偏差0.86;预测集相关系数为0.86,预测集标准偏差为0.69)。利用回归系数法(regression coefficient,RC)从全波长模型中选择14个特征波长,建立2nd-der-RC-PLS特征波长模型,模型性能(校正集相关系数为0.86,校正集标准偏差1.03;预测集相关系数为0.80,预测集标准偏差为0.77)与全波长模型相当。采用2nd-der-RC-PLS算法将花生高光谱图像转变成蛋白质含量分布图。成对t检验判断凯氏定氮法与高光谱法无显著性差异。结果表明结合化学计量学的高光谱成像技术为测定花生中蛋白质含量分布提供了一种高效非破坏性方法。