期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自适应辅助分类器生成式对抗网络样本生成模型及轴承故障诊断 被引量:7
1
作者 杨光友 刘浪 《中国机械工程》 EI CAS CSCD 北大核心 2022年第13期1613-1621,共9页
故障样本获取困难导致的训练样本不均衡严重影响故障诊断模型的可用性及准确率,因此提出一种基于自适应辅助分类器生成式对抗网络的故障样本生成模型,通过度量判别器与生成器的相对性能自适应地调节生成器损失值,使训练收敛更快、生成... 故障样本获取困难导致的训练样本不均衡严重影响故障诊断模型的可用性及准确率,因此提出一种基于自适应辅助分类器生成式对抗网络的故障样本生成模型,通过度量判别器与生成器的相对性能自适应地调节生成器损失值,使训练收敛更快、生成数据质量更好。将所提方法、辅助分类器生成式对抗网络方法生成的数据,以及未经处理的试验原始数据作为BP分类模型的输入数据进行试验,结果表明所提方法生成数据训练的模型更优。所提方法与1D-CNN、e2e-LSTM、CFVS-SVM和FFT-CNN等方法的对比结果表明,所提方法的故障诊断准确率、信息处理时间均最优。 展开更多
关键词 故障诊断 生成对抗网络 深度学习 滚动轴承
下载PDF
基于SDAE-BP的联合收割机作业故障监测 被引量:12
2
作者 杨光友 +3 位作者 刘浪 刘景 陈学海 马志艳 《农业工程学报》 EI CAS CSCD 北大核心 2020年第17期46-53,共8页
为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以... 为了解决联合收割机作业故障的非线性特征信号难以提取的问题,该研究提出了一种基于堆叠去噪自动编码器(Stack Denoising Auto Encoder,SDAE)和BP神经网络(Back Propagation,BP)融合的联合收割机作业故障监测及诊断的方法(SDAE-BP)。以转速传感器采集联合收割机脱粒滚筒转速、籽粒搅龙转速、喂入搅龙转速、杂余搅龙转速、风机转速、输送链耙转速、割刀频率以及逐稿器振动频率,并将采集的数据集作为系统的输入。利用SDAE提取输入信号的深层次特征,并由BP神经网络辨识收割机作业状态,实现联合收割机故障监测。在SDAE-BP模型训练过程中,去噪自动编码器(Denoising Auto Encode,DAE)依次经带有不同分布中心噪声的原始数据进行训练,然后将其堆叠,并通过误差反向传播算法对模型参数进行优化,以提升模型识别故障性能和泛化能力。试验结果表明,对于2018年联合收割机田间试验数据,模型的故障诊断准确率达到99.00%,与SDAE和BP神经网络相比,分别提高了1.5和4.5个百分点。将SDAE-BP故障诊断模型用2019年的试验数据进行更新,并用2018年和2019年试验数据进行测试,结果表明,更新后的模型对2018年试验数据的故障识别准确率为99.25%,对2019年试验数据的故障识别准确率为98.74%,更新后模型在2019试验数据集上的故障识别准确率较未更新模型提高了6.52个百分点。该文所建模型能够准确识别联合收割机的故障类型,且具有较好的鲁棒性,对旋转型机械故障监测及预警具有参考价值。 展开更多
关键词 农业机械 故障诊断 试验 联合收割机 SDAE-BP模型 深层次特征 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部