The asymptotic normalization coefficients (ANCs) of the virtual decay 16N -- 15N + n are extracted from the 15N(7Li, 6Li)16N reaction populating the ground and first three excited states in 16N. The root-mean-squ...The asymptotic normalization coefficients (ANCs) of the virtual decay 16N -- 15N + n are extracted from the 15N(7Li, 6Li)16N reaction populating the ground and first three excited states in 16N. The root-mean-square (rms) radii of the valence neutron in these four low-lying 16N states are then derived by using the ANCs. The probabilities of the valence neutron staying out of the core potentials are found to be 31%± 8%, 58%± 12%, 3270 ± 8%, and 60% ± 12%. The present results support the conclusion that a one-neutron halo may be formed in the 16N first and third excited states, while the ground and second excited states do not have a one-neutron halo structure. However, the core excitation effect has a strong influence on the one-neutron halo structure of the ground and first excited states in 16N.展开更多
基金Supported by National Natural Science Foundation of China(11505117,11490560,11475264,11321064,11375269)Natural Science Foundation of Guangdong Province(2015A030310012)+1 种基金973 program of China(2013CB834406)National key Research and Development Province(2016YFA0400502)
文摘The asymptotic normalization coefficients (ANCs) of the virtual decay 16N -- 15N + n are extracted from the 15N(7Li, 6Li)16N reaction populating the ground and first three excited states in 16N. The root-mean-square (rms) radii of the valence neutron in these four low-lying 16N states are then derived by using the ANCs. The probabilities of the valence neutron staying out of the core potentials are found to be 31%± 8%, 58%± 12%, 3270 ± 8%, and 60% ± 12%. The present results support the conclusion that a one-neutron halo may be formed in the 16N first and third excited states, while the ground and second excited states do not have a one-neutron halo structure. However, the core excitation effect has a strong influence on the one-neutron halo structure of the ground and first excited states in 16N.