在兰新铁路第二双线一处典型泥岩地基工点处,采用开挖不同深度浸水孔并施加上部荷载方法,进行3个试验基坑的泥岩地基原位浸水膨胀变形试验,分别研究在9.75,21.44,38.99,58.48,65.31,77.99 k Pa六种上覆荷载情况下,以及0.7,1.1,1.5 m三...在兰新铁路第二双线一处典型泥岩地基工点处,采用开挖不同深度浸水孔并施加上部荷载方法,进行3个试验基坑的泥岩地基原位浸水膨胀变形试验,分别研究在9.75,21.44,38.99,58.48,65.31,77.99 k Pa六种上覆荷载情况下,以及0.7,1.1,1.5 m三种浸水深度情况下,泥岩地基的膨胀变形特性。结果表明:泥岩浸水膨胀变形表现为短暂软化沉降、膨胀骤增、膨胀减缓、膨胀平衡稳定4个阶段;得出不同浸水深度与膨胀变形值为非线性关系;在浸水孔深度1.5 m,上部荷载9.75 k Pa时,地基最大膨胀量约41 mm;在上覆荷载值一定的情况下,浸水后地基泥岩含水率会达到最大限值,约14%,且浸水量不会随着外界水分补给而增大;当泥岩内部含水率在限值范围内增大时,会储存有膨胀能,在上覆荷载减小或浸水深度增大的情况下,泥岩地基以稍滞后的膨胀变形体现出其膨胀能;拟合得出泥岩地基膨胀量与上覆荷载的非线性关系曲线及关系式;总结泥岩加荷–浸水膨胀以塑性变形为主,卸载情况下泥岩的回弹量值占总变形量的6.39%~7.00%。展开更多
文摘在兰新铁路第二双线一处典型泥岩地基工点处,采用开挖不同深度浸水孔并施加上部荷载方法,进行3个试验基坑的泥岩地基原位浸水膨胀变形试验,分别研究在9.75,21.44,38.99,58.48,65.31,77.99 k Pa六种上覆荷载情况下,以及0.7,1.1,1.5 m三种浸水深度情况下,泥岩地基的膨胀变形特性。结果表明:泥岩浸水膨胀变形表现为短暂软化沉降、膨胀骤增、膨胀减缓、膨胀平衡稳定4个阶段;得出不同浸水深度与膨胀变形值为非线性关系;在浸水孔深度1.5 m,上部荷载9.75 k Pa时,地基最大膨胀量约41 mm;在上覆荷载值一定的情况下,浸水后地基泥岩含水率会达到最大限值,约14%,且浸水量不会随着外界水分补给而增大;当泥岩内部含水率在限值范围内增大时,会储存有膨胀能,在上覆荷载减小或浸水深度增大的情况下,泥岩地基以稍滞后的膨胀变形体现出其膨胀能;拟合得出泥岩地基膨胀量与上覆荷载的非线性关系曲线及关系式;总结泥岩加荷–浸水膨胀以塑性变形为主,卸载情况下泥岩的回弹量值占总变形量的6.39%~7.00%。
文摘针对兰新二线地基中低黏土矿物泥岩分别进行了现场原位和室内原状及重塑样的浸水-加荷膨胀变形试验,得到了现场0.7 m浸水深度下上覆荷载与膨胀变形的关系以及室内不同上覆荷载下泥岩原状和重塑试样的膨胀变形特性。试验及分析结果表明:此处地基泥岩虽无蒙脱石,但具膨胀性;在不同上覆荷载(9.75,38.99,58.49,77.99 k Pa)下的现场原位泥岩浸水试验过程中,泥岩地基的膨胀变形表现出二次曲线特性;上覆荷载为9.75 k Pa时,地基膨胀变形量最大为40.94 mm。在不同上覆荷载情况下的室内泥岩浸水试验中,室内原状土样膨胀变形规律也近似为二次曲线;在无上覆荷载情况下,原状土样最大膨胀变形值为1.98 mm。由于土样内部结构受到扰动,重塑土变形特性与原状土差异很大;在无上覆荷载情况下,重塑土随着干密度增大,膨胀变形增大;随着含水率减小,膨胀变形增大;在无上覆荷载时,含水率为8%、干密度为1.7 g/cm3时的最大膨胀变形值最大,为1.37 mm;在一定荷载情况下,重塑土直接表现出压缩固结的变形特性。