针对移动自组网(MANET,mobile ad hoc networks)入侵检测过程中的攻击类型多样性和监测数据海量性问题,提出了一种基于改进k-means算法的MANET异常检测方法。通过引入划分贡献度的概念,可合理地计算各维特征在检测中占有的权重,并将遗...针对移动自组网(MANET,mobile ad hoc networks)入侵检测过程中的攻击类型多样性和监测数据海量性问题,提出了一种基于改进k-means算法的MANET异常检测方法。通过引入划分贡献度的概念,可合理地计算各维特征在检测中占有的权重,并将遗传算法与快速聚类检测算法k-means相结合,解决了聚类检测结果容易陷入局部最优的问题,进而,提出了以上检测算法在Map Reduce框架下的设计方案,利用种群迁移策略在分布式处理器上实现了并行聚类检测。实验结果证明了该方法的检测准确率和运行效率均优于传统聚类检测方法。展开更多
文摘针对移动自组网(MANET,mobile ad hoc networks)入侵检测过程中的攻击类型多样性和监测数据海量性问题,提出了一种基于改进k-means算法的MANET异常检测方法。通过引入划分贡献度的概念,可合理地计算各维特征在检测中占有的权重,并将遗传算法与快速聚类检测算法k-means相结合,解决了聚类检测结果容易陷入局部最优的问题,进而,提出了以上检测算法在Map Reduce框架下的设计方案,利用种群迁移策略在分布式处理器上实现了并行聚类检测。实验结果证明了该方法的检测准确率和运行效率均优于传统聚类检测方法。