期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
注意力机制下的VMD-IDBiGRU负荷预测模型 被引量:7
1
作者 邵必林 义川 曾卉玢 《电力系统及其自动化学报》 CSCD 北大核心 2022年第10期120-128,共9页
针对传统神经网络在负荷预测中精度欠佳、预测速度较慢的问题,提出一种基于注意力机制、变分模态分解和改进的深度双向门控循环单元短期负荷预测模型。该模型首先通过变分模态分解算法将负荷数据分解,以降低原始负荷数据的复杂度。然后... 针对传统神经网络在负荷预测中精度欠佳、预测速度较慢的问题,提出一种基于注意力机制、变分模态分解和改进的深度双向门控循环单元短期负荷预测模型。该模型首先通过变分模态分解算法将负荷数据分解,以降低原始负荷数据的复杂度。然后:针对传统分解加预测组合模型存在参数多、模型复杂的问题,基于权值共享的思想建立改进的深度双向门控循环单元神经网络;引入注意力机制来突出关键因素的影响,通过注意力权重深度挖掘负荷数据存在的规律。最后,以中国某地区的负荷数据作为实例,通过与传统预测模型进行对比得出,本文所提模型在精度和速度方面均有一定的提升。 展开更多
关键词 注意力机制 变分模态分解 双向门控循环单元 权值共享 负荷预测
下载PDF
基于改进VMD和聚类权值共享的负荷预测
2
作者 邵必林 义川 曾卉玢 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2024年第9期1310-1318,共9页
针对常见的数据分解加预测算法的组合负荷预测方法具有参数多、训练慢以及模态间共有信息不能有效提取的问题,提出了一种基于改进变分模态分解(variational mode decomposition,VMD)和聚类权值共享的负荷预测模型。模型首先引入互相关... 针对常见的数据分解加预测算法的组合负荷预测方法具有参数多、训练慢以及模态间共有信息不能有效提取的问题,提出了一种基于改进变分模态分解(variational mode decomposition,VMD)和聚类权值共享的负荷预测模型。模型首先引入互相关函数以寻找VMD的最优分解K值,然后利用K-means将分解后的模态分量进行聚类以突出模态分量的时序特征,最后利用权值共享思想对聚类后的分量进行快速准确的建模预测。仿真结果表明:该模型的平均绝对百分比误差(mean absolute percentage error,MAPE)和均方根误差(root mean square error,RMSE)分别为5.29%和986.50,与传统的单一预测模型相比,所提算法的MAPE和RMSE平均降低了7.50%和982.41;与常见的数据分解加预测算法的组合相比,所提算法的MAPE和RMSE平均降低了3.09%和268.93,训练速度也有一定提升。 展开更多
关键词 负荷预测 变分模态分解 权值共享 K-MEANS聚类 长短期记忆网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部