Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns ...Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS.展开更多
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using ...Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.展开更多
Using 10-year (January 1998-October 2007) dataset of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), we extracted the dominant spatial patterns and temporal variations of the chlorophyll distribution in the centr...Using 10-year (January 1998-October 2007) dataset of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), we extracted the dominant spatial patterns and temporal variations of the chlorophyll distribution in the central western South China Sea (SCS) through Empirical Orthogonal Function (EOF) analysis. The results show that the first EOF mode is characterized by a high chlorophyll concentration zone along the Vietnam coast. We found two peaks in summer (July-August) and in winter (December), respectively, in normal years. The second EOF mode is characterized by a jet-shaped tongue of high chlorophyll concentration extending seaward to the northeast in slammer (July-August). To investigate the interannual variability of the chlorophyll concentration, we extracted the first non-seasonal (annual cycle removed) EOF mode, which shows high spatial variability off the southeast Vietnam coast. Both spatial pattern and time coefficients correspond well with those of sea surface temperature mode, and are closely correlated to ENSO events, with a lag of 7 months.展开更多
基金Supported by the National Natural Science Foundation of China(No.41306026)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2013009)+1 种基金the National Basic Research Program of China(973 Program)(No.2011CB403504)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS.
基金Supported by the National Natural Science Foundation of China(Nos.41306026,41176025,41176031)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2008014)+2 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104)the Global Change and Ocean-Atmosphere Interaction(No.GASI-03-01-01-03)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.
基金Supported by the National Basic Research Program/the International Cooperative Program (Nos.2006CB403603,2006CB40302/05,2006DFB21630)the National Natural Science Foundation of China (Nos.40876008,40520140074)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-214)
文摘Using 10-year (January 1998-October 2007) dataset of Sea-viewing Wide Field-of-view Sensor (SeaWiFS), we extracted the dominant spatial patterns and temporal variations of the chlorophyll distribution in the central western South China Sea (SCS) through Empirical Orthogonal Function (EOF) analysis. The results show that the first EOF mode is characterized by a high chlorophyll concentration zone along the Vietnam coast. We found two peaks in summer (July-August) and in winter (December), respectively, in normal years. The second EOF mode is characterized by a jet-shaped tongue of high chlorophyll concentration extending seaward to the northeast in slammer (July-August). To investigate the interannual variability of the chlorophyll concentration, we extracted the first non-seasonal (annual cycle removed) EOF mode, which shows high spatial variability off the southeast Vietnam coast. Both spatial pattern and time coefficients correspond well with those of sea surface temperature mode, and are closely correlated to ENSO events, with a lag of 7 months.