目的为解决中药药性描述的抽象、模糊导致难以准确把握其本质特性的问题,提出一种基于多层前馈神经网络(BP神经网络)的药向量训练(quantitative model of traditional Chinese medicine’s properties based on BP neural network,QM-BP...目的为解决中药药性描述的抽象、模糊导致难以准确把握其本质特性的问题,提出一种基于多层前馈神经网络(BP神经网络)的药向量训练(quantitative model of traditional Chinese medicine’s properties based on BP neural network,QM-BP)模型,实现中药药性的量化表示。方法首先对中药及其对应的功效进行整理,获得"中药-功效"样本对;其次,构建"中药-药向量-功效"3层结构的QM-BP模型,并利用中药的药性数据对模型进行初始化;最后,基于QM-BP模型使用"中药-功效"样本进行训练,得到BP药向量。结果将《中药学》教材所涉及的474味中药及其528个功效基于QM-BP模型训练并结合临床分析,发现训练后得到的BP药向量比药性的初始量化值更能反映中药的属性特征。此外,由于BP药向量与词向量具有相似的性质,发现功效相似的药物对应的BP药向量在欧几里得距离中距离较近,而功效差异较大的中药药向量在欧几里得距离中距离较远。结论利用BP神经网络构建药向量训练模型,在中药药性与功效具有关联性的基础上,对药性量化值进行修正,以期使药性量化值更精确。今后可优化QM-BP模型并开展药对、复方分析,以期探明中药药性及组方配伍中蕴藏的内在规律。展开更多
文摘目的为解决中药药性描述的抽象、模糊导致难以准确把握其本质特性的问题,提出一种基于多层前馈神经网络(BP神经网络)的药向量训练(quantitative model of traditional Chinese medicine’s properties based on BP neural network,QM-BP)模型,实现中药药性的量化表示。方法首先对中药及其对应的功效进行整理,获得"中药-功效"样本对;其次,构建"中药-药向量-功效"3层结构的QM-BP模型,并利用中药的药性数据对模型进行初始化;最后,基于QM-BP模型使用"中药-功效"样本进行训练,得到BP药向量。结果将《中药学》教材所涉及的474味中药及其528个功效基于QM-BP模型训练并结合临床分析,发现训练后得到的BP药向量比药性的初始量化值更能反映中药的属性特征。此外,由于BP药向量与词向量具有相似的性质,发现功效相似的药物对应的BP药向量在欧几里得距离中距离较近,而功效差异较大的中药药向量在欧几里得距离中距离较远。结论利用BP神经网络构建药向量训练模型,在中药药性与功效具有关联性的基础上,对药性量化值进行修正,以期使药性量化值更精确。今后可优化QM-BP模型并开展药对、复方分析,以期探明中药药性及组方配伍中蕴藏的内在规律。